Skip to main content
Chemistry LibreTexts

1.14.12: Legendre Transformations

  • Page ID
    386457
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Many important thermodynamic equations are closely related. These relationships are often highlighted by the mathematical technique, Legendre Transformations [1,2]. With reference to thermodynamics, Callen [3] discusses application of Legendre Transformations. The essential features of Legendre Transformations can be understood in the following terms.

    A primary variable \(\mathrm{Q}\) is defined by two dependent variables \(x\) and \(y\). Thus

    \[Q=Q[x, y] \nonumber \]

    Then

    \[\mathrm{dQ}=\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)_{\mathrm{y}} \, \mathrm{dx}+\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{y}}\right)_{\mathrm{x}} \, \mathrm{dy} \nonumber \]

    By definition,

    \[\mathrm{u}=\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{x}}\right)_{\mathrm{y}} \quad \text { and } \quad \mathrm{v}=\left(\frac{\partial \mathrm{Q}}{\partial \mathrm{y}}\right)_{\mathrm{x}} \nonumber \]

    Then from equation (b),

    \[\mathrm{dQ}=\mathrm{u} \, \mathrm{dx}+\mathrm{v} \, \mathrm{dy} \nonumber \]

    A new variable \(\mathrm{Z}\) is defined by equation (e).

    \[\mathrm{Z}=\mathrm{Z}[\mathrm{u}, \mathrm{y}] \text { where } \mathrm{Z}=\mathrm{Q}-\mathrm{u} \, \mathrm{x} \nonumber \]

    Then,

    \[\mathrm{dZ}=\mathrm{dQ}-\mathrm{x} \, \mathrm{du}-\mathrm{u} \, \mathrm{dx} \nonumber \]

    Hence using equation (d),

    \[d Z=u \, d x+v \, d y-x \, d u-u \, d x \nonumber \]

    Or,

    \[\mathrm{d} Z=-\mathrm{x} \, \mathrm{du}+\mathrm{v} \, \mathrm{dy} \nonumber \]

    Hence,

    \[x=-\left(\frac{\partial Z}{\partial u}\right)_{y} \quad \text { and } \quad v=\left(\frac{\partial Z}{\partial y}\right)_{u} \nonumber \]

    Comparison of equations (a) and (e) reveals the transformation, \(\mathrm{Q}[\mathrm{x}, \mathrm{y}] \rightarrow \mathrm{Z}[\mathrm{u}, \mathrm{y}]\). We now explore thermodynamic transformations [3]. The following Master Equation relates the change in thermodynamic energy \(\mathrm{U}\) with the changes in entropy \(\mathrm{S}\) at temperature \(\mathrm{T}\), volume \(\mathrm{V}\) at pressure \(\mathrm{p}\) and composition \(\xi\) at affinity \(\mathrm{A}\); \(\mathrm{U}=\mathrm{U}[\mathrm{S}, \mathrm{V}, \xi]\).

    \[\mathrm{dU}=\mathrm{T} \, \mathrm{dS}-\mathrm{p} \, \mathrm{dV}-\mathrm{A} \, \mathrm{d} \xi \nonumber \]

    By definition, enthalpy \(\mathrm{H}=\mathrm{U}+\mathrm{p} \, \mathrm{V}\);

    \[\mathrm{dH}=-\mathrm{dU}+\mathrm{p} \, \mathrm{dV}+\mathrm{V} \, \mathrm{dp} \nonumber \]

    Using equation (j),

    \[\mathrm{dH}=\mathrm{T} \, \mathrm{dS}-\mathrm{p} \, \mathrm{dV}-\mathrm{A} \, \mathrm{d} \xi+\mathrm{p} \, \mathrm{dV}+\mathrm{V} \, \mathrm{dp} \nonumber \]

    Then \(\mathrm{dH}=\mathrm{T} \, \mathrm{dS}+\mathrm{V} \, \mathrm{dp}-\mathrm{A} \, \mathrm{d} \xi\) Or,

    \[\mathrm{H}=\mathrm{H}[\mathrm{S}, \mathrm{p}, \xi] \nonumber \]

    The transformation is- \(\mathrm{U}[\mathrm{S}, \mathrm{V}, \xi] \rightarrow \mathrm{H}[\mathrm{S}, \mathrm{p}, \xi]\) By definition, Gibbs energy

    \[\mathrm{G}=\mathrm{U}+\mathrm{p} \, \mathrm{V}-\mathrm{T} \, \mathrm{S} \nonumber \]

    Or using equation (k),

    \[\mathrm{G}=\mathrm{H}-\mathrm{T} \, \mathrm{S} \nonumber \]

    Then

    \[\mathrm{dG}=\mathrm{dH}-\mathrm{T} \, \mathrm{dS}-\mathrm{S} \, \mathrm{dT} \nonumber \]

    Hence from equation (l)

    \[\mathrm{dG}=\mathrm{T} \, \mathrm{dS}+\mathrm{V} \, \mathrm{dp}-\mathrm{A} \, \mathrm{d} \xi-\mathrm{T} \, \mathrm{dS}-\mathrm{S} \, \mathrm{dT} \nonumber \]

    Or, \(\mathrm{dG}=-\mathrm{S} \, \mathrm{dT}+\mathrm{V} \, \mathrm{dp}-\mathrm{A} \, \mathrm{d} \xi\) And,

    \[\mathrm{G}=\mathrm{G}[\mathrm{T}, \mathrm{p}, \xi] \nonumber \]

    The transformation is \(\mathrm{H}[\mathrm{S}, \mathrm{p}, \xi] \rightarrow \mathrm{G}[\mathrm{T}, \mathrm{p}, \xi]\) Similarly, \(\mathrm{U}[\mathrm{S}, \mathrm{V}, \xi] \rightarrow \mathrm{F}[\mathrm{T}, \mathrm{V}, \xi]\) Ledgendre transformations can be examined in the broad context of chemistry and biochemistry [5]. Their importance lies in establishing the general mathematical structure of thermodynamics [6].

    Footnotes

    [1] A. M. Legendre; an eighteenth century mathematician.

    [2] C. Paus at http://web.mit.edu /8.21/www/ notes/notes/ node7.html

    [3] B. Callen, Thermodynamics, Wiley, New York,1961.

    [4] E. Grunwald, Thermodynamics of Molecular Species, Wiley, New York , 1997.

    [5] R. A. Alberty, Chem. Revs.,1994,94,1457.

    [6] D. Kondepudi and I. Prigogine, Modern Thermodynamics, Wiley, New York,1998.


    This page titled 1.14.12: Legendre Transformations is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.