Skip to main content
Chemistry LibreTexts

1.14.3: Absorption Isotherms - Two Absorbates

  • Page ID
    352498
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We consider the case where in addition to the adsorbent there are two adsorbates, chemical substances \(i\) and \(j\) in aqueous solution [1]. In the simplest case the thermodynamic properties of the system are ideal. In other words for both solutes and adsorbates there are no \(i - i\), \(j - j\) and \(i - j\) interactions. Analysis of the adsorption using the Langmuir adsorption isotherm leads to two terms describing the surface coverage, \(\theta_{i}\) and \(\theta_{j}\) plus the total surface coverage, \(\theta_{i} + \theta_{j}\). The chemical potentials of the solutes in solution are described in terms of their concentrations (assuming pressure \(p\) is close to the standard pressure); \mathrm{c}_{\mathrm{r}}=1 \mathrm{~mol dm}^{-3}.

    \[\mu_{j}(a q)=\mu_{j}^{0}(a q)+R \, T \, \ln \left(c_{j} / c_{r}\right) \nonumber \]

    \[\mu_{i}(a q)=\mu_{i}^{0}(a q)+R \, T \, \ln \left(c_{i} / c_{r}\right) \nonumber \]

    The upper limit of the total surface occupancy is unity and so we expect as \(\left(\theta_{i} + \theta_{j} \right)\) approaches unity the sum of the chemical potentials \(\mu_{j}(\mathrm{ad})\) and \(\mu_{i}(\mathrm{ad})\) approaches \(+\infty\), thereby opposing any tendency for further solute to be adsorbed. If we assert that there are no substrate-substrate interactions on the surface, the chemical potential of adsorbate \(j\) can be formulated as follows.

    \[\mu_{j}(\mathrm{ad})=\mu_{j}^{0}(\mathrm{ad})+\mathrm{R} \, \mathrm{T} \, \ln \left[\theta_{\mathrm{j}} /\left(1-\theta_{\mathrm{i}}-\theta_{\mathrm{j}}\right)\right] \nonumber \]

    The denominator \(\left(1-\theta_{i}-\theta_{j}\right)\) takes account of the fact that adsorbate \(i\) also occupies the surface. Thus as \(\left(\theta_{i} + \theta_{j} \right)\) approaches unity there are no more sites on the surface for adsorbate \(j\) (and adsorbate \(i\) ) to occupy.

    \[\text { Thus } \operatorname{limit}\left[\left(1-\theta_{\mathrm{i}}-\theta_{\mathrm{j}}\right) \rightarrow 0\right] \mu_{\mathrm{j}}(\mathrm{ad})=+\infty \nonumber \]

    The equilibrium between chemical substance \(j\) as solute and adsorbate is described as follows.

    \[\text { Solute }-\mathrm{j}+\text { Polymer Surface } \Leftrightarrow \text { Adsorbate } \mathrm{j} \nonumber \]

    \[\text { Prepared } \mathrm{n}_{\mathrm{j}}^{0} \quad \quad \quad 0 \mathrm{~mol} \nonumber \]

    \[\text { Equilib. } \quad \mathrm{n}_{\mathrm{j}}^{0}-\xi_{\mathrm{j}} \quad \xi_{\mathrm{j}}+\xi_{\mathrm{i}} \quad \xi_{\mathrm{j}} \mathrm{mol} \nonumber \]

    We express the fraction of surface coverage as proportional to the extent of adsorption via a proportionality constant \(\pi\) which is a function of the sizes of the solutes and geometric parameters describing the surface.

    \[\text { Then, } \quad \theta_{i}=\pi_{i} \, \xi_{i} \quad \text { and } \theta_{j}=\pi_{j} \, \xi_{j} \nonumber \]

    \[\text { At equilibrium } \mu_{\mathrm{j}}^{\mathrm{eq}}(\mathrm{aq})=\mu_{\mathrm{j}}^{\mathrm{eq}} \text { (ad) and } \mu_{\mathrm{i}}^{\mathrm{eq}}(\mathrm{aq})=\mu_{\mathrm{i}}^{\mathrm{eq}}(\mathrm{ad}) \nonumber \]

    Hence for a system having volume \(\mathrm{V}\),

    \[\begin{aligned}
    \mu_{\mathrm{j}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left[\left(\mathrm{n}_{\mathrm{j}}^{0}-\xi_{\mathrm{j}}\right) / \mathrm{V} \, \mathrm{c}_{\mathrm{r}}\right] \\
    &=\mu_{\mathrm{j}}^{0}(\mathrm{ad})+\mathrm{R} \, \mathrm{T} \, \ln \left[\frac{\pi_{\mathrm{j}} \, \xi_{\mathrm{j}}}{1-\pi_{\mathrm{j}} \, \xi_{\mathrm{j}}-\pi_{\mathrm{i}} \, \xi_{\mathrm{i}}}\right]
    \end{aligned} \nonumber \]

    \[\text { By definition, } \Delta_{\mathrm{ad}} \mathrm{G}_{\mathrm{j}}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \mathrm{K}_{\mathrm{j}}=\mu_{\mathrm{j}}^{0}(\mathrm{ad})-\mu_{\mathrm{j}}^{0}(\mathrm{aq}) \nonumber \]

    \[\text { Hence, } \mathrm{K}_{\mathrm{j}}=\left[\frac{\pi_{\mathrm{j}} \, \xi_{\mathrm{j}}}{1-\pi_{\mathrm{j}} \, \xi_{\mathrm{j}}-\pi_{\mathrm{i}} \, \xi_{\mathrm{i}}}\right] \, \frac{\mathrm{V} \, \mathrm{c}_{\mathrm{r}}}{\left(\mathrm{n}_{\mathrm{j}}^{0}-\xi_{\mathrm{j}}\right)} \nonumber \]

    A similar equation is obtained for equilibrium constant \(\mathrm{K}_{i}\). Both equations are quadratics in the extent of adsorption

    Footnotes

    [1] M. J. Blandamer, B. Briggs, P. M. Cullis, K. D. Irlam, J. B. F. N. Engberts and J. Kevelam, J. Chem. Soc. Faraday Trans.,1998, 94, 259.


    This page titled 1.14.3: Absorption Isotherms - Two Absorbates is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.