Skip to main content
Chemistry LibreTexts

1.22.10: Volume: Aqueous Binary Liquid Mixtures

  • Page ID
    397794
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    For binary aqueous mixtures (at ambient pressure and fixed temperature) there are two interesting reference points.

    1. The molar volume of the pure liquid component 2, \(\mathrm{V}_{2}^{*}(\lambda)\).

    In the latter case we imagine that each molecule of liquid 2 is surrounded by an infinite expanse of water. With gradual increase in \(\mathrm{x}_{2}\), so (on average) the molecules of liquid 2 move closer together.

    Typically Aqueous Mixtures

    For these systems \(\left[\mathrm{V}_{2}^{\infty}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) is negative. But this pattern is not unique to aqueous systems. The unique feature is the decrease in \(\left[\mathrm{V}_{2}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) with increase in \(\mathrm{x}_{2}\) at low \(\mathrm{x}_{2}\) [1]. In fact with increase in hydrophobicity of chemical substance 2, the decrease is more striking and the minimum in \(\left[\mathrm{V}_{2}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) occurs at lower \(\mathrm{x}_{2}\). At mole fractions beyond \(\mathrm{x}_{2}\left[\mathrm{~V}_{2}(\mathrm{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) increases with increase in \(\mathrm{x}_{2}\). Many explanations have been offered for this complicated pattern. The following is one explanation.

    The negative \(\left[\mathrm{V}_{2}^{\infty}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) is accounted for in terms of a liquid clathrate in which part of the hydrophobic group ‘occupies’ a guest site in the liquid water ‘lattice’. The decrease in \(\left[\mathrm{V}_{2}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) is accounted for in terms of an increasing tendency towards a liquid clathrate hydrate structure. With increase in \(\mathrm{x}_{2}\) there comes a point where there is insufficient water to construct the liquid clathrate host. Hence \(\left[\mathrm{V}_{2}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) increases [2,3].

    Typically Non-Aqueous Systems

    Although \(\left[\mathrm{V}_{2}^{\infty}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\) is negative no minimum is observed in \(\left[\mathrm{V}_{2}(\operatorname{mix})-\mathrm{V}_{2}^{*}(\lambda)\right]\).

    Footnotes

    [1] See for example; fluoroalcohols(aq); C. H. Rochester and J. R. Symonds, J. Fluorine Chem.,1974,4,141.

    [2] F. Franks, Ann. N. Y. Acad. Sci.,1955,125,277.

    [3] For many binary aqueous mixtures the patterns in volume related properties often identify transition points at ‘structurally interesting compositions’; G. Roux, D. Roberts, G. Perron and J. E. Desnoyers, J. Solution Chem.,1980,9,629.


    This page titled 1.22.10: Volume: Aqueous Binary Liquid Mixtures is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.