Skip to main content
Chemistry LibreTexts

1.22.1: Volume: Partial Molar: General Analysis

  • Page ID
    397779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    At temperature \(\mathrm{T}\), pressure \(\mathrm{p}\) and equilibrium, the volume of a closed system containing i-chemical substances where the amounts can be independently varied, is defined by the following equation.

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \ldots \mathrm{n}_{\mathrm{i}}\right] \nonumber \]

    Or, in general terms according to Euler’s theorem,

    \[\mathrm{V}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{V}_{\mathrm{j}} \nonumber \]

    where

    \[\mathrm{V}_{\mathrm{j}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}_{\mathrm{i} \neq \mathrm{j}}} \nonumber \]

    The general differential of equation (b) has the following form.

    \[\mathrm{dV}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{dV} \mathrm{V}_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{V}_{\mathrm{j}} \, \mathrm{dn} \mathrm{n}_{\mathrm{j}} \nonumber \]

    The general differential of equation (a) has the following form

    \[\mathrm{dV}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dT}+\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}_{\mathrm{i} \neq \mathrm{j}}} \, \mathrm{dn}_{\mathrm{j}} \nonumber \]

    Comparison of equations (d) and (e) shows that

    \[0=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dT}-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{dV} \mathrm{j}_{\mathrm{j}} \nonumber \]

    Equation (f) is the Gibbs-Duhem Equation with respect to the volumetric properties of a closed system at equilibrium.

    Application

    A given closed system contains \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of solute \(j\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The system is at equilibrium where \(\mathrm{G}\) is a minimum, the affinity for spontaneous change \(\mathrm{A}\) is zero and the composition-organisation \(\xi^{\mathrm{eq}}\). The dependent variable volume \(\mathrm{V}\) is defined using a set of independent variables; equation (g).

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}\right] \nonumber \]

    Equation (k) has an interesting property. If we multiply the extensive variables \(\mathrm{n}_{1}\) and \(\mathrm{n}_{j}\) by a factor \(\mathrm{k}\), the volume of the system equals (\(\mathrm{V}. \mathrm{~k}\)). In terms of Euler’s Theorem [1], the variable \(\mathrm{V}\) linked to the variables \(\mathrm{n}_{1}\) and \(\mathrm{n}_{j}\) is a homogeneous function of the first degree. The important consequence is the following key relation.

    \[\mathrm{V}=\mathrm{n}_{1} \, \mathrm{V}_{1}+\mathrm{n}_{\mathrm{j}} \, \mathrm{V}_{\mathrm{j}} \nonumber \]

    where

    \[\mathrm{V}_{1}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(\mathrm{j})} \nonumber \]

    and

    \[\mathrm{V}_{\mathrm{j}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(1)} \nonumber \]

    We do not have to specify the conditions ‘at constant \(\mathrm{T}\) and \(\mathrm{p}\)’ in conjunction with equation (h) which is a mathematical identity.

    Footnote

    [1] Degree of Homogeneity

    At temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the volume of a closed system containing \(\mathrm{n}_{j}\) moles of each chemical substance \(j\) is given by

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{n}_{1}, \mathrm{n}_{2} \ldots \ldots \ldots \ldots . \ldots \mathrm{n}_{\mathrm{k}}\right] \nonumber \]

    The property volume has unit degree of homogeneity. That is to say – if the amount of each substance is increased by a factor \(\lambda\) then the volume increases by the same factor. Thus

    \[\mathrm{V}\left[\lambda \mathrm{n}_{1}, \lambda \mathrm{n}_{2} \ldots \ldots \ldots \ldots . . \lambda \mathrm{n}_{\mathrm{k}}\right]=\lambda \, \mathrm{V}\left[\mathrm{n}_{1}, \mathrm{n}_{2} \ldots \ldots \ldots \ldots . \ldots \mathrm{n}_{\mathrm{k}}\right] \nonumber \]


    This page titled 1.22.1: Volume: Partial Molar: General Analysis is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.