Skip to main content
Chemistry LibreTexts

1.22.1: Volume: Partial Molar: General Analysis

  • Page ID
    397779
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    At temperature \(\mathrm{T}\), pressure \(\mathrm{p}\) and equilibrium, the volume of a closed system containing i-chemical substances where the amounts can be independently varied, is defined by the following equation.

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \ldots \mathrm{n}_{\mathrm{i}}\right]\]

    Or, in general terms according to Euler’s theorem,

    \[\mathrm{V}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{V}_{\mathrm{j}}\]

    where

    \[\mathrm{V}_{\mathrm{j}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}_{\mathrm{i} \neq \mathrm{j}}}\]

    The general differential of equation (b) has the following form.

    \[\mathrm{dV}=\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{dV} \mathrm{V}_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{V}_{\mathrm{j}} \, \mathrm{dn} \mathrm{n}_{\mathrm{j}}\]

    The general differential of equation (a) has the following form

    \[\mathrm{dV}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dT}+\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}_{\mathrm{i} \neq \mathrm{j}}} \, \mathrm{dn}_{\mathrm{j}}\]

    Comparison of equations (d) and (e) shows that

    \[0=-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dT}-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{n}_{\mathrm{i}}} \, \mathrm{dp}+\sum_{\mathrm{j}=1}^{\mathrm{j}=\mathrm{i}} \mathrm{n}_{\mathrm{j}} \, \mathrm{dV} \mathrm{j}_{\mathrm{j}}\]

    Equation (f) is the Gibbs-Duhem Equation with respect to the volumetric properties of a closed system at equilibrium.

    Application

    A given closed system contains \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of solute \(j\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The system is at equilibrium where \(\mathrm{G}\) is a minimum, the affinity for spontaneous change \(\mathrm{A}\) is zero and the composition-organisation \(\xi^{\mathrm{eq}}\). The dependent variable volume \(\mathrm{V}\) is defined using a set of independent variables; equation (g).

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}\right]\]

    Equation (k) has an interesting property. If we multiply the extensive variables \(\mathrm{n}_{1}\) and \(\mathrm{n}_{j}\) by a factor \(\mathrm{k}\), the volume of the system equals (\(\mathrm{V}. \mathrm{~k}\)). In terms of Euler’s Theorem [1], the variable \(\mathrm{V}\) linked to the variables \(\mathrm{n}_{1}\) and \(\mathrm{n}_{j}\) is a homogeneous function of the first degree. The important consequence is the following key relation.

    \[\mathrm{V}=\mathrm{n}_{1} \, \mathrm{V}_{1}+\mathrm{n}_{\mathrm{j}} \, \mathrm{V}_{\mathrm{j}}\]

    where

    \[\mathrm{V}_{1}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(\mathrm{j})}\]

    and

    \[\mathrm{V}_{\mathrm{j}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{T}, \mathrm{p}, \mathrm{n}(1)}\]

    We do not have to specify the conditions ‘at constant \(\mathrm{T}\) and \(\mathrm{p}\)’ in conjunction with equation (h) which is a mathematical identity.

    Footnote

    [1] Degree of Homogeneity

    At temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the volume of a closed system containing \(\mathrm{n}_{j}\) moles of each chemical substance \(j\) is given by

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{n}_{1}, \mathrm{n}_{2} \ldots \ldots \ldots \ldots . \ldots \mathrm{n}_{\mathrm{k}}\right]\]

    The property volume has unit degree of homogeneity. That is to say – if the amount of each substance is increased by a factor \(\lambda\) then the volume increases by the same factor. Thus

    \[\mathrm{V}\left[\lambda \mathrm{n}_{1}, \lambda \mathrm{n}_{2} \ldots \ldots \ldots \ldots . . \lambda \mathrm{n}_{\mathrm{k}}\right]=\lambda \, \mathrm{V}\left[\mathrm{n}_{1}, \mathrm{n}_{2} \ldots \ldots \ldots \ldots . \ldots \mathrm{n}_{\mathrm{k}}\right]\]


    This page titled 1.22.1: Volume: Partial Molar: General Analysis is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?