Skip to main content
Chemistry LibreTexts

1.18.3: Liquid Mixtures: Series Functions for Activity Coefficients

  • Page ID
    394367
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given binary liquid mixture is prepared using liquid-1 and liquid-2 at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the latter being close to the standard pressure. The chemical potentials, \(\mu_{1}\left(\operatorname{mix} ; x_{1}\right)\) and \(\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)\) are related to the mole fraction composition, \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\left(=1-\mathrm{x}_{1}\right)\) using equations (a) and (c) where \(\mu_{1}^{*}(\ell)\) and \(\mu_{2}^{*}(\ell)\) are the chemical potentials of the two pure liquid components at the same \(\mathrm{T}\) and \(\mathrm{p}\);

    \[\mu_{1}\left(\operatorname{mix} ; \mathrm{x}_{1}\right)=\mu_{1}^{*}(\ell)+R \, T \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right) \nonumber \]

    where

    \[\operatorname{limit}\left(x_{1} \rightarrow 1\right) f_{1}=1 \nonumber \]

    \[\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)=\mu_{2}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{2} \, \mathrm{f}_{2}\right) \nonumber \]

    where

    \[\operatorname{limit}\left(\mathrm{x}_{2} \rightarrow 1\right) \mathrm{f}_{2}=1 \nonumber \]

    A quite general approach to understanding the properties of binary liquid mixtures expresses, for example, \(\ln \left(f_{1}\right)\) as a series function in terms of mole fraction \(x_{2}\) at fixed \(\mathrm{T}\) and \(\mathrm{p}\). Using only three terms we obtain equation (e).

    \[\ln \left(f_{1}\right)=\alpha_{2} \, x_{2}^{2}+\alpha_{3} \, x_{2}^{3}+\alpha_{4} \, x_{2}^{4} \nonumber \]

    As required,

    \[\operatorname{limit}\left(x_{2} \rightarrow 0\right) \ln \left(f_{1}\right)=0 ; f_{1}=1 \nonumber \]

    Hence [1],

    \[\begin{aligned}
    \ln \left(f_{2}\right) &=\left[\alpha_{2}+(3 / 2) \, \alpha_{3}+2 \, \alpha_{4}\right] \, x_{1}^{2} \\
    &-\left[\alpha_{3}+(8 / 3) \, \alpha_{4}\right] \, x_{1}^{3}+\alpha_{4} \, x_{1}^{4}
    \end{aligned} \nonumber \]

    As required, \(\operatorname{limit}\left(x_{1} \rightarrow 0\right) \ln \left(f_{2}\right)=0 ; f_{2}=1\)

    Footnotes

    [1] From, \(\ln \left(f_{1}\right)=\alpha_{2} \, x_{2}^{2}+\alpha_{3} \, x_{2}^{3}+\alpha_{4} \, x_{2}^{4}\)

    \[\ln \left(f_{1}\right)=\alpha_{2} \,\left(1-x_{1}\right)^{2}+\alpha_{3} \,\left(1-x_{1}\right)^{3}+\alpha_{4} \,\left(1-x_{1}\right)^{4} \nonumber \]

    Then

    \[\frac{\mathrm{d} \ln \left(f_{1}\right)}{d x_{1}}=-2 \, \alpha_{2} \,\left(1-x_{1}\right)-3 \, \alpha_{3} \,\left(1-x_{1}\right)^{2}-4 \, \alpha_{4} \,\left(1-x_{1}\right)^{3} \nonumber \]

    But from the Gibbs-Duhem equation (at fixed \(\mathrm{T}\) and \(\mathrm{p}\))

    \[x_{1} \, \frac{d \ln \left(f_{1}\right)}{d x_{1}}+x_{2} \, \frac{d \ln \left(f_{2}\right)}{d x_{1}}=0 \nonumber \]

    Or,

    \[\frac{\mathrm{d} \ln \left(f_{2}\right)}{\mathrm{dx}_{1}}=-\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx}_{1}} \nonumber \]

    Or,

    \[\frac{d \ln \left(f_{2}\right)}{d x_{1}}=-\frac{x_{1}}{\left(1-x_{1}\right)} \, \frac{d \ln \left(f_{1}\right)}{d x_{1}} \nonumber \]

    Then,

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{2}\right)}{\mathrm{dx}_{1}}=2 \, \alpha_{2} \, \mathrm{x}_{1}+3 \, \mathrm{x}_{1} \, \alpha_{3} \,\left(1-\mathrm{x}_{1}\right)+4 \, \alpha_{4} \, \mathrm{x}_{1} \,\left(1-\mathrm{x}_{1}\right)^{2} \nonumber \]

    \[\frac{\mathrm{d} \ln \left(f_{2}\right)}{d x_{1}}=2 \, \alpha_{2} \, x_{1}+3 \, x_{1} \, \alpha_{3}-3 \, \alpha_{3} \, x_{1}^{2}+4 \, \alpha_{4} \, x_{1}-8 \, \alpha_{4} \, x_{1}^{2}+4 \, \alpha_{4} \, x_{1}^{3} \nonumber \]

    Or,

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{2}\right)}{\mathrm{dx}_{1}}=\left[2 \, \alpha_{2}+3 \, \alpha_{3}+4 \, \alpha_{4}\right] \, \mathrm{x}_{1}-\left[3 \, \alpha_{3}+8 \, \alpha_{4}\right] \, \mathrm{x}_{1}^{2}+4 \, \alpha_{4} \, \mathrm{x}_{1}^{3} \nonumber \]

    The latter equation is integrated.

    \[\ln \left(f_{2}\right)=\left[\alpha_{2}+(3 / 2) \, \alpha_{3}+2 \, \alpha_{4}\right] \, x_{1}^{2}-\left[\alpha_{3}+(8 / 3) \, \alpha_{4}\right] \, x_{1}^{3}+\alpha_{4} \, x_{1}^{4} \nonumber \]


    This page titled 1.18.3: Liquid Mixtures: Series Functions for Activity Coefficients is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.