Skip to main content
Chemistry LibreTexts

1.18.3: Liquid Mixtures: Series Functions for Activity Coefficients

  • Page ID
    394367
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given binary liquid mixture is prepared using liquid-1 and liquid-2 at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the latter being close to the standard pressure. The chemical potentials, \(\mu_{1}\left(\operatorname{mix} ; x_{1}\right)\) and \(\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)\) are related to the mole fraction composition, \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\left(=1-\mathrm{x}_{1}\right)\) using equations (a) and (c) where \(\mu_{1}^{*}(\ell)\) and \(\mu_{2}^{*}(\ell)\) are the chemical potentials of the two pure liquid components at the same \(\mathrm{T}\) and \(\mathrm{p}\);

    \[\mu_{1}\left(\operatorname{mix} ; \mathrm{x}_{1}\right)=\mu_{1}^{*}(\ell)+R \, T \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)\]

    where

    \[\operatorname{limit}\left(x_{1} \rightarrow 1\right) f_{1}=1\]

    \[\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)=\mu_{2}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{2} \, \mathrm{f}_{2}\right)\]

    where

    \[\operatorname{limit}\left(\mathrm{x}_{2} \rightarrow 1\right) \mathrm{f}_{2}=1\]

    A quite general approach to understanding the properties of binary liquid mixtures expresses, for example, \(\ln \left(f_{1}\right)\) as a series function in terms of mole fraction \(x_{2}\) at fixed \(\mathrm{T}\) and \(\mathrm{p}\). Using only three terms we obtain equation (e).

    \[\ln \left(f_{1}\right)=\alpha_{2} \, x_{2}^{2}+\alpha_{3} \, x_{2}^{3}+\alpha_{4} \, x_{2}^{4}\]

    As required,

    \[\operatorname{limit}\left(x_{2} \rightarrow 0\right) \ln \left(f_{1}\right)=0 ; f_{1}=1\]

    Hence [1],

    \[\begin{aligned}
    \ln \left(f_{2}\right) &=\left[\alpha_{2}+(3 / 2) \, \alpha_{3}+2 \, \alpha_{4}\right] \, x_{1}^{2} \\
    &-\left[\alpha_{3}+(8 / 3) \, \alpha_{4}\right] \, x_{1}^{3}+\alpha_{4} \, x_{1}^{4}
    \end{aligned}\]

    As required, \(\operatorname{limit}\left(x_{1} \rightarrow 0\right) \ln \left(f_{2}\right)=0 ; f_{2}=1\)

    Footnotes

    [1] From, \(\ln \left(f_{1}\right)=\alpha_{2} \, x_{2}^{2}+\alpha_{3} \, x_{2}^{3}+\alpha_{4} \, x_{2}^{4}\)

    \[\ln \left(f_{1}\right)=\alpha_{2} \,\left(1-x_{1}\right)^{2}+\alpha_{3} \,\left(1-x_{1}\right)^{3}+\alpha_{4} \,\left(1-x_{1}\right)^{4}\]

    Then

    \[\frac{\mathrm{d} \ln \left(f_{1}\right)}{d x_{1}}=-2 \, \alpha_{2} \,\left(1-x_{1}\right)-3 \, \alpha_{3} \,\left(1-x_{1}\right)^{2}-4 \, \alpha_{4} \,\left(1-x_{1}\right)^{3}\]

    But from the Gibbs-Duhem equation (at fixed \(\mathrm{T}\) and \(\mathrm{p}\))

    \[x_{1} \, \frac{d \ln \left(f_{1}\right)}{d x_{1}}+x_{2} \, \frac{d \ln \left(f_{2}\right)}{d x_{1}}=0\]

    Or,

    \[\frac{\mathrm{d} \ln \left(f_{2}\right)}{\mathrm{dx}_{1}}=-\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx}_{1}}\]

    Or,

    \[\frac{d \ln \left(f_{2}\right)}{d x_{1}}=-\frac{x_{1}}{\left(1-x_{1}\right)} \, \frac{d \ln \left(f_{1}\right)}{d x_{1}}\]

    Then,

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{2}\right)}{\mathrm{dx}_{1}}=2 \, \alpha_{2} \, \mathrm{x}_{1}+3 \, \mathrm{x}_{1} \, \alpha_{3} \,\left(1-\mathrm{x}_{1}\right)+4 \, \alpha_{4} \, \mathrm{x}_{1} \,\left(1-\mathrm{x}_{1}\right)^{2}\]

    \[\frac{\mathrm{d} \ln \left(f_{2}\right)}{d x_{1}}=2 \, \alpha_{2} \, x_{1}+3 \, x_{1} \, \alpha_{3}-3 \, \alpha_{3} \, x_{1}^{2}+4 \, \alpha_{4} \, x_{1}-8 \, \alpha_{4} \, x_{1}^{2}+4 \, \alpha_{4} \, x_{1}^{3}\]

    Or,

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{2}\right)}{\mathrm{dx}_{1}}=\left[2 \, \alpha_{2}+3 \, \alpha_{3}+4 \, \alpha_{4}\right] \, \mathrm{x}_{1}-\left[3 \, \alpha_{3}+8 \, \alpha_{4}\right] \, \mathrm{x}_{1}^{2}+4 \, \alpha_{4} \, \mathrm{x}_{1}^{3}\]

    The latter equation is integrated.

    \[\ln \left(f_{2}\right)=\left[\alpha_{2}+(3 / 2) \, \alpha_{3}+2 \, \alpha_{4}\right] \, x_{1}^{2}-\left[\alpha_{3}+(8 / 3) \, \alpha_{4}\right] \, x_{1}^{3}+\alpha_{4} \, x_{1}^{4}\]


    This page titled 1.18.3: Liquid Mixtures: Series Functions for Activity Coefficients is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.