Skip to main content
Chemistry LibreTexts

1.18.2: Liquid Mixtures: General Equations

  • Page ID
    394366
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given binary liquid mixture is prepared using liquid-1 and liquid –2 at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\), the latter being close to the standard pressure. The chemical potentials, \(\mu_{1}\left(\operatorname{mix} ; \mathrm{x}_{1}\right)\) and \(\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)\) are related to the mole fraction composition, \(x_{1}\) and \(x_{2} (= 1 - x_{1})\) using equations (a) and (c) where \(\mu_{1}^{*}(\ell)\) and \(\mu_{2}^{*}(\ell)\) are the chemical potentials of the two pure liquid components at the same \(\mathrm{T}\) and \(\mathrm{p}\);

    \[\mu_{1}\left(\operatorname{mix} ; \mathrm{x}_{1}\right)=\mu_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right) \nonumber \]

    where

    \[\operatorname{limit}\left(x_{1} \rightarrow 1\right) f_{1}=1 \nonumber \]

    \[\mu_{2}\left(\operatorname{mix} ; \mathrm{x}_{2}\right)=\mu_{2}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{2} \, \mathrm{f}_{2}\right) \nonumber \]

    where

    \[\operatorname{limit}\left(\mathrm{x}_{2} \rightarrow 1\right) \mathrm{f}_{2}=1 \nonumber \]

    A general equation for activity coefficient \(\mathrm{f}_{1}\) takes the following form [1].

    \[\ln \left(f_{1}\right)=\sum_{k=1}^{k=\infty} \alpha_{k} \, x_{s}^{\lambda(k)} \nonumber \]

    Equation (e) satisfies the condition,

    \[\operatorname{limit}\left(x_{2} \rightarrow 0\right) \ln \left(f_{1}\right)=0 ; f_{1}=1 \nonumber \]

    The parameter \(\alpha_{\mathrm{k}}\) is characteristic of the mixture, temperature and pressure. The property \(\lambda_{\mathrm{k}}\) is a real number. In the limit that the liquid mixture is dilute in chemical substance liquid-2, equation (e) simplifies to equation (g).

    \[\ln \left(f_{1}\right)=\alpha \, x_{2}^{\lambda} \nonumber \]

    In general terms [2],

    \[x_{1} \, d \ln \left(f_{1}\right)+x_{2} \, d \ln \left(f_{2}\right)=0 \nonumber \]

    We combine equations (e) and (h) with \(\lambda_{k} \geq 2\) [3].

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{1} / \mathrm{f}_{2}\right)}{\mathrm{dx}_{2}}=\frac{1}{\mathrm{x}_{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx} \mathrm{x}_{2}}=\sum_{\mathrm{k}=1}^{\mathrm{k}=\infty} \alpha_{\mathrm{k}} \, \lambda_{\mathrm{k}} \, \mathrm{x}_{2}^{\lambda(\mathrm{k})-2} \nonumber \]

    Equation (i) is integrated to yield equation (j) where \(\mathrm{I}\) is the constant of integration.

    \[\ln \left(f_{2}\right)=\ln \left(f_{1}\right)-\sum_{k=1}^{k=\infty} \frac{\alpha_{k} \, \lambda_{k} \, x_{2}^{\lambda(k)-1}}{\lambda_{k}-1}-I \nonumber \]

    Hence [4,5]

    \[\begin{aligned}
    \ln \left(f_{2}\right) &=\ln \left(f_{1}\right)-\sum_{k=1}^{k=\infty} \frac{\alpha_{k} \, \lambda_{k}}{\lambda_{k}-1} \,\left(x_{2}^{\lambda(k)-1}-1\right)-\sum_{k=1}^{k=\infty} \alpha_{k} \\
    &=\ln \left(f_{1}\right)-\sum_{k=1}^{k=\infty} \alpha_{k} \,\left[\frac{\lambda_{k}}{\lambda_{k}-1} \,\left(x_{2}^{\lambda-(k-1)}-1\right)-1\right]
    \end{aligned} \nonumber \]

    In other words, granted that \(\ln \left(f_{1}\right)\) is known as a function of \(x_{2}\), then \(\ln \left(f_{2}\right)\) can be calculated.

    Footnotes

    [1] I. Prigogine and R. Defay, Chemical Thermodynamics, transl. D. H. Everett, Longmans Green, London, 1954.

    [2] For a binary liquid mixture , the Gibbs-Duhem equation relates activity coefficients \(\mathrm{f}_{1}\) and \(\mathrm{f}_{2}\). Thus,

    \[-S \, d T+V \, d p+n_{1} \, d \mu_{1}+n_{2} \, d \mu_{2}=0 \nonumber \]

    At fixed \(\mathrm{T}\) and \(\mathrm{p}\), \(\mathrm{n}_{1} \, \mathrm{d} \mu_{1}+\mathrm{n}_{2} \, \mathrm{d} \mu_{2}=0\)

    Divide by \(\left(n_{1}+n_{2}\right)\); \(x_{1} \, d \mu_{1}+x_{2} \, d \mu_{2}=0\)

    \[\begin{gathered}
    \mathrm{x}_{1} \, \mathrm{d}\left[\mu_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)\right]+\mathrm{x}_{2} \, \mathrm{d}\left[\mu_{2}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{2} \, \mathrm{f}_{2}\right)\right]=0 \\
    \mathrm{x}_{1} \, \mathrm{d} \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)+\mathrm{x}_{2} \, \mathrm{d} \ln \left(\mathrm{x}_{2} \, \mathrm{f}_{2}\right)=0 \\
    \mathrm{x}_{1} \, \mathrm{d} \ln \left(\mathrm{x}_{1}\right)+\mathrm{x}_{1} \, \mathrm{d} \ln \left(\mathrm{f}_{1}\right)+\mathrm{x}_{2} \, \mathrm{d} \ln \left(\mathrm{x}_{2}\right)+\mathrm{x}_{2} \, \mathrm{d} \ln \left(\mathrm{f}_{2}\right)=0
    \end{gathered} \nonumber \]

    But

    \[\mathrm{x}_{1} \, \mathrm{d} \ln \left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \, \mathrm{d} \ln \left(\mathrm{x}_{2}\right)=\left(\mathrm{x}_{1} / \mathrm{x}_{1}\right) \, \mathrm{dx} \mathrm{x}_{1}+\left(\mathrm{x}_{2} / \mathrm{x}_{2}\right) \, \mathrm{dx} \mathrm{x}_{2} \nonumber \]

    Also \(\mathrm{x}_{1}+\mathrm{x}_{2}=1\) so that \(\mathrm{dx}_{1}+\mathrm{dx}_{2}=0\)

    [3] From equation (h) for a binary liquid mixture at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\begin{array}{r}
    \left(1-x_{2}\right) \, \frac{d \ln \left(f_{1}\right)}{d x_{2}}+x_{2} \, \frac{d \ln \left(f_{2}\right)}{d x_{2}}=0 \\
    \frac{d \ln \left(f_{1}\right)}{d x_{2}}-x_{2} \, \frac{d \ln \left(f_{1}\right)}{d x_{2}}+x_{2} \, \frac{d \ln \left(f_{2}\right)}{d x_{2}}=0
    \end{array} \nonumber \]

    We divide by \(x_{2}\) and rearrange the equation.

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx} \mathrm{x}_{2}}-\frac{\mathrm{d} \ln \left(\mathrm{f}_{2}\right)}{\mathrm{dx}_{2}}=\frac{1}{\mathrm{x}_{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx} \mathrm{x}_{2}} \nonumber \]

    Or,

    \[\frac{\mathrm{d} \ln \left(\mathrm{f}_{1} / \mathrm{f}_{2}\right)}{\mathrm{dx} \mathrm{x}_{2}}=\frac{1}{\mathrm{x}_{2}} \, \frac{\mathrm{d} \ln \left(\mathrm{f}_{1}\right)}{\mathrm{dx_{2 }}} \nonumber \]

    [4] From equations (e) and (j),

    \[\ln \left(f_{2}\right)=\sum_{k=1}^{k=\infty} \alpha_{k} \, x_{2}^{\lambda(k)}-\sum_{k=1}^{k=\infty} \frac{\alpha_{k} \, \lambda_{k} \, x_{2}^{\lambda(k)-1}}{\lambda_{k}-1}-I \nonumber \]

    But at \(x_{2} = 1, f_{2} = 1\). Then,

    \[0=\sum_{\mathrm{k}=1}^{\mathrm{k}=\infty} \alpha_{\mathrm{k}}-\sum_{\mathrm{k}=1}^{\mathrm{k}=\infty} \frac{\alpha_{\mathrm{k}} \, \lambda_{\mathrm{k}}}{\lambda_{\mathrm{k}}-1}-\mathrm{I} \nonumber \]

    [5] J. N. Bronsted and P. Colmart, Z. Phys. Chem.,1934,A168, 381 ( as quoted in reference 1).


    This page titled 1.18.2: Liquid Mixtures: General Equations is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.