Skip to main content
Chemistry LibreTexts

1.13.4: Equilibrium- Liquid-Solid- Schroeder - van Laar Equation

  • Page ID
    375583
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given homogeneous binary liquid system (at pressure \(\mathrm{p}\)) contains two chemical substances \(\mathrm{i}\) and \(\mathrm{j}\) at temperature \(\mathrm{T}\). The liquid system is cooled and only substance \(\mathrm{j}\) separates out as the pure solid substance \(\mathrm{j}\). Hence,

    \[\ln \left[\mathrm{x}_{\mathrm{j}}(\ell) \,\mathrm{f}_{\mathrm{j}}(\ell)\right]=\int_{\mathrm{T}_{\mathrm{j}}^{0}}^{\mathrm{T}} \frac{\left[\Delta_{\text {trans }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{R} \,\mathrm{T}^{2}} \,\mathrm{dT} \label{a}\]

    Here \(x_{j}(\ell)\) is the mole fraction composition of the liquid; \(f_{j}(\ell)\) is the rational activity coefficient of substance \(j\) in the liquid mixture at mole fraction \(x_{j}(\ell)\) and temperature \(\mathrm{T}\). \(\mathrm{T}_{\mathrm{j}}^{0}\) is the melting point of pure \(j\) substance \(j\) at pressure \(\mathrm{p}\); i.e., both liquid and solid phases are pure chemical substance \(j\).

    In the event that \(\Delta_{\text {trans }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\) is independent of temperature [i.e. \(\Delta_{\text {trans }} C_{p j}^{0}(T, p)\) is zero] Equation \ref{a} is integrated to yield Equation \ref{b}.

    \[-\ln \left[\mathrm{x}_{\mathrm{j}}(\ell) \,\mathrm{f}_{\mathrm{j}}(\ell)\right]=\dfrac{\Delta_{\text {fus}} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})}{\mathrm{R}} \, \left(\dfrac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{j}}^{0}}\right) \label{b}\]

    The phenomenon under consideration is fusion so that \(\Delta_{\text {fus }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\) is the enthalpy of fusion of chemical substance \(j\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). In the event that the thermodynamic properties of the liquid-solid system are ideal, Equation \ref{b} simplifies to Equation \ref{c}.

    \[-\ln \left[\mathrm{x}_{\mathrm{j}}(\ell)\right]=\frac{\Delta_{\mathrm{f}} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})}{\mathrm{R}} \left(\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{j}}^{0}}\right) \label{c}\]

    Equation \ref{c} is the Schroeder- van Laar Equation [1].

    Footnote

    [1] I. Prigogine and R Defay, Chemical Thermodynamics, transl. D. H. Everett, Longmans Greeen, London, 1953.


    This page titled 1.13.4: Equilibrium- Liquid-Solid- Schroeder - van Laar Equation is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.