Skip to main content
Chemistry LibreTexts

1.13.3: Equilibirium- Solid-Liquid

  • Page ID
    375582
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given homogeneous liquid system comprises two chemical substances \(\mathrm{i}\) and \(\mathrm{j}\) at known \(\mathrm{T}\) and \(\mathrm{p}\). The temperature and/or pressure are changed. Consequently chemical substance \(\mathrm{j}\) spontaneously separates out as a solid phase but substance \(\mathrm{i}\) does not. Hence the liquid becomes richer in chemical substance \(\mathrm{i}\).

    The starting point of the analysis is the following equation for the affinity for spontaneous transfer of substance \(\mathrm{j}\) from phase II to phase I [1].

    \[\begin{aligned}
    \delta\left(\frac{A_{j}}{T}\right)=& \frac{\left[\Delta_{\text {trans }} H_{j}^{0}(T, p)\right]}{T^{2}} \, \delta T \\
    &-\frac{\left[\Delta_{\text {trans }} V_{j}^{0}(T, p)\right]}{T} \, \delta p+R \, \delta \ln \left[\frac{x_{j}(I) \, f_{j}(I)}{x_{j}(\text { II }) \, f_{j}(I I)}\right]
    \end{aligned}\]

    For two equilibrium states such that \(\delta\left(\mathrm{A}_{\mathrm{j}} / \mathrm{T}\right)\) is zero for the transfer of chemical substance \(\mathrm{j}\) from phase II to phase I,

    \[\mathrm{R} \, \delta \ln \left[\frac{\mathrm{x}_{\mathrm{j}}(\mathrm{II}) \, \mathrm{f}_{\mathrm{j}}(\mathrm{II})}{\mathrm{x}_{\mathrm{j}}(\mathrm{I}) \, \mathrm{f}_{\mathrm{j}}(\mathrm{I})}\right]=\frac{\left[\Delta_{\text {trans }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{T}^{2}} \, \delta \mathrm{T}-\frac{\left[\Delta_{\text {trans }} \mathrm{V}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{T}} \, \delta \mathrm{p}\]

    In this application, chemical substance \(\mathrm{i}\) cannot exist in phase I. Then the equilibrium states are determined by substance \(\mathrm{j}\). Further we consider the case where state I corresponds to pure \(\mathrm{j}\) such that \(x_{j}(I) \, f_{j}(I)\) is unity at reference temperature \(\mathrm{T}_{\text{ref}}\) and reference pressure pref. We integrate equation (b) between these two states.

    \[\begin{aligned}
    &\ln \left[\mathrm{x}_{\mathrm{j}}(\mathrm{II}) \, \mathrm{f}_{\mathrm{j}}(\mathrm{II})\right]= \\
    &\qquad \int_{\mathrm{T}(\mathrm{ref})}^{\mathrm{T}} \frac{\left[\Delta_{\text {trans }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{R} \, \mathrm{T}^{2}} \, \mathrm{dT}-\int_{\mathrm{p}(\mathrm{ref})}^{\mathrm{p}} \frac{\left[\Delta_{\text {trans }} \mathrm{V}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{R} \, \mathrm{T}} \, \mathrm{dp}
    \end{aligned}\]

    In the event that the pressure is constant,

    \[\ln \left[\mathrm{x}_{\mathrm{j}}(\mathrm{II}) \, \mathrm{f}_{\mathrm{j}}(\mathrm{II})\right]=\int_{\mathrm{T}(\mathrm{ref})}^{\mathrm{T}} \frac{\left[\Delta_{\text {trans }} \mathrm{H}_{\mathrm{j}}^{0}(\mathrm{~T}, \mathrm{p})\right]}{\mathrm{R} \, \mathrm{T}^{2}} \, \mathrm{dT}\]

    Footnote

    [1] By definition, for the transfer of one mole of chemical substance j from phase II to phase I, \(A_{j}=-\left[\mu_{j}(\mathrm{I})-\mu_{j}(\mathrm{II})\right] ; \mathrm{Or}, \mathrm{A}_{\mathrm{j}}=\mu_{\mathrm{j}}(\mathrm{II})-\mu_{\mathrm{j}}(\mathrm{I})\)


    This page titled 1.13.3: Equilibirium- Solid-Liquid is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.