Skip to main content
Chemistry LibreTexts

1.12.24: Expansions- Equations

  • Page ID
    377921
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We simplify the algebra by omitting the descriptors (aq) and (\(\ell\)) in the following equations. The starting point is the following equation.

    \[\alpha_{S}-\alpha_{S}^{*}=\frac{\alpha_{S}}{\kappa_{S} \, \sigma} \,\left(\kappa_{S} \, \sigma-\kappa_{S}^{*} \, \sigma^{*}\right)-\frac{\alpha_{S}^{*}}{\alpha_{p}} \,\left(\alpha_{p}-\alpha_{p}^{*}\right)\]

    The latter equation is effectively an identity. Thus from equation (a)

    \[\alpha_{S}-\alpha_{S}^{*}=\alpha_{S}-\frac{\alpha_{S}}{\kappa_{S} \, \sigma} \, \kappa_{S}^{*} \, \sigma^{*}-\alpha_{S}^{*}+\frac{\alpha_{S}^{*}}{\alpha_{p}} \, \alpha_{p}^{*}\]

    But \(\alpha_{\mathrm{s}}=-\kappa_{\mathrm{s}} \, \sigma / \mathrm{T} \, \alpha_{\mathrm{p}}\) and \(\alpha_{\mathrm{p}}^{*} / \alpha_{\mathrm{s}}^{*}=-\kappa_{\mathrm{s}}^{*} \, \sigma^{*} / \mathrm{T}\)

    Then from (b), \(\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}+\frac{\kappa_{\mathrm{s}} \, \sigma}{\mathrm{T} \, \alpha_{\mathrm{p}} \, \kappa_{\mathrm{s}} \, \sigma} \, \kappa_{\mathrm{s}}^{*} \, \sigma^{*}-\frac{\kappa_{\mathrm{s}}^{*} \, \sigma^{*}}{\alpha_{\mathrm{p}} \, \mathrm{T}}\) or \(\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}=\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}\)

    But as an identity,

    \[\kappa_{\mathrm{S}} \, \sigma-\kappa_{\mathrm{S}}^{*} \, \sigma^{*}=\sigma \,\left(\kappa_{\mathrm{S}}-\kappa_{\mathrm{S}}^{*}\right)+\kappa_{\mathrm{S}}^{*} \,\left(\sigma-\sigma^{*}\right)\]

    Then from equations (a) and (c),

    \[\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}=\frac{\alpha_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \,\left(\kappa_{\mathrm{s}}-\kappa_{\mathrm{s}}^{*}\right)+\frac{\alpha_{\mathrm{s}} \, \kappa_{\mathrm{s}}^{*}}{\kappa_{\mathrm{s}} \, \sigma} \,\left(\sigma-\sigma^{*}\right)-\frac{\alpha_{\mathrm{s}}^{*}}{\alpha_{\mathrm{p}}} \,\left(\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right)\]

    But,

    \[\phi\left(E_{\mathrm{S}} ; \operatorname{def}\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}\right)+\alpha_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\]

    Hence

    \[\begin{aligned}
    \phi\left(E_{\mathrm{s} j} ; \operatorname{def}\right)=& \frac{\alpha_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \,\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\kappa_{\mathrm{s}}-\kappa_{\mathrm{s}}^{*}\right)+\frac{\alpha_{\mathrm{s}} \, \kappa_{\mathrm{s}}^{*}}{\kappa_{\mathrm{s}} \, \sigma} \,\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\sigma-\sigma^{*}\right) \\
    &-\frac{\alpha_{\mathrm{s}}^{*}}{\alpha_{\mathrm{p}}} \,\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right)+\alpha_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned}\]

    For isobaric heat capacities,

    \[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\sigma-\sigma^{*}\right)+\sigma^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\]

    Also

    \[\phi\left(K_{\mathrm{S}_{j}} ; \operatorname{def}\right)=\left[\mathrm{c}_{\mathrm{j}}\right]^{-1} \,\left(\kappa_{\mathrm{s}}-\kappa_{\mathrm{s}}^{*}\right)+\kappa_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\]

    Hence

    \[\begin{aligned}
    \phi\left(\mathrm{E}_{\mathrm{s} j} ; \operatorname{def}\right)=& \frac{\alpha_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \,\left[\phi\left(\mathrm{K}_{\mathrm{s} j} ; \operatorname{def}\right)-\kappa_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\frac{\alpha_{\mathrm{s}} \, \kappa_{\mathrm{s}}^{*}}{\kappa_{\mathrm{s}} \, \sigma} \,\left[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\sigma^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    &-\frac{\alpha_{\mathrm{s}}^{*}}{\alpha_{\mathrm{p}}} \,\left[\phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\alpha_{\mathrm{p}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\alpha_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned}\]

    Then with a little reorganisation,

    \[\begin{aligned}
    \phi\left(\mathrm{E}_{\mathrm{s} j} ; \operatorname{def}\right)=&-\frac{\alpha_{\mathrm{s}}^{*}}{\alpha_{\mathrm{p}}} \, \phi\left(\mathrm{E}_{\mathrm{p} j}\right)+\frac{\alpha_{\mathrm{s}}}{\kappa_{\mathrm{s}}} \, \phi\left(\mathrm{K}_{\mathrm{s} j} ; \operatorname{def}\right)+\frac{\alpha_{\mathrm{s}} \, \kappa_{\mathrm{s}}^{*}}{\kappa_{\mathrm{s}} \, \sigma} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \\
    &+\left[\alpha_{\mathrm{s}}^{*} \,\left(1+\frac{\alpha_{\mathrm{p}}^{*}}{\alpha_{\mathrm{p}}}\right)-\frac{\alpha_{\mathrm{s}} \, \kappa_{\mathrm{s}}^{*}}{\kappa_{\mathrm{s}}} \,\left(1+\frac{\sigma^{*}}{\sigma}\right)\right] \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned}\]

    Hence, in the limit of infinite dilution, \(\frac{\phi\left(\mathrm{E}_{\mathrm{Sj}} ; \operatorname{def}\right)^{\infty}}{\alpha_{\mathrm{S} 1}^{*}(\ell)}=-\frac{\phi\left(\mathrm{E}_{\mathrm{pj}}\right)^{\infty}}{\alpha_{\mathrm{p} 1}^{*}(\ell)}+\frac{\phi\left(\mathrm{K}_{\mathrm{s} j} ; \mathrm{def}\right)^{\infty}}{\kappa_{\mathrm{s} 1}^{*}(\ell)}+\frac{\phi\left(\mathrm{C}_{\mathrm{pj}}\right)^{\infty}}{\sigma_{1}^{*}(\ell)}\)


    This page titled 1.12.24: Expansions- Equations is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?