Skip to main content
Chemistry LibreTexts

1.12.23: Expansions- The Difference

  • Page ID
    377821
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For a solution,

    \[\varepsilon=\alpha_{p}-\alpha_{s}=\kappa_{T} \, \sigma / T \, \alpha_{p} \nonumber \]

    In order to simplify the algebra, we omit (aq) and (\(\ell\)) when describing the properties of an aqueous solution and the pure liquid respectively. Superscript '*' identifies the pure solvent.

    \[\varepsilon^{*}=\alpha_{\mathrm{p}}^{*}-\alpha_{\mathrm{S}}^{*}=\kappa_{\mathrm{T}}^{*} \, \sigma^{*} / \mathrm{T} \, \alpha_{\mathrm{p}}^{*} \nonumber \]

    Hence,

    \[\varepsilon-\varepsilon^{*}=\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \,\left[\kappa_{\mathrm{T}} \, \sigma-\kappa_{\mathrm{T}}^{*} \, \sigma^{*}\right]-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right] \nonumber \]

    The latter equation is effectively an identity. According to equation (c)

    \[\varepsilon-\varepsilon=\varepsilon-\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \, \kappa_{\mathrm{T}}^{*} \, \sigma^{*}-\varepsilon+\frac{\varepsilon}{\alpha_{\mathrm{p}}} \, \alpha_{\mathrm{p}}^{*} \nonumber \]

    We use equations (a) and (b) in the second and fourth terms on the right hand side of the latter equation.

    \[\varepsilon-\varepsilon^{*}=\varepsilon-\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \, \varepsilon^{*} \, \mathrm{T} \, \alpha_{\mathrm{p}}^{*}-\varepsilon^{*}+\frac{\varepsilon^{*} \, \alpha_{\mathrm{p}}^{*} \, \mathrm{T} \, \varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \nonumber \]

    Or \(\varepsilon-\varepsilon^{*}=\varepsilon-\varepsilon^{*}\) Further, as an identity,

    \[\kappa_{\mathrm{T}} \, \sigma-\kappa_{\mathrm{T}}^{*} \, \sigma^{*}=\sigma \,\left(\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right)+\kappa_{\mathrm{T}}^{*} \,\left(\sigma-\sigma^{*}\right) \nonumber \]

    From equation (c),

    \[\varepsilon-\varepsilon^{*}=\frac{\varepsilon}{\kappa_{\mathrm{T}}} \,\left[\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right]+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \,\left(\sigma-\sigma^{*}\right)-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right] \nonumber \]

    But

    \[\phi\left(\mathrm{E}_{\mathrm{sj}} ; \mathrm{def}\right)=\frac{\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}}{\mathrm{c}_{\mathrm{j}}}+\alpha_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right) \nonumber \]

    The analogue for \(\phi\left(E_{p j}\right)\) is the following equation. \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)=\frac{\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}}{\mathrm{c}_{\mathrm{j}}}+\alpha_{\mathrm{p}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\) Hence

    \[\phi\left(E_{p j}\right)-\phi\left(E_{S_{j}} ; \operatorname{def}\right)=\frac{\varepsilon-\varepsilon^{*}}{c_{j}}+\varepsilon^{*} \, \phi\left(V_{j}\right) \nonumber \]

    From equation (g), dividing by \(\mathrm{c}_{j}\),

    \[\begin{gathered}
    \frac{\varepsilon-\varepsilon}{c_{j}}=\frac{\varepsilon}{\kappa_{T}} \, \frac{1}{c_{j}} \,\left[\kappa_{T}-\kappa_{T}^{*}\right]+\frac{\varepsilon \, \kappa_{T}^{*}}{\kappa_{T} \, \sigma} \, \frac{1}{c_{j}} \,\left[\sigma-\sigma^{*}\right] \\
    -\frac{\varepsilon^{*}}{\alpha_{p}} \, \frac{1}{c_{j}} \,\left[\alpha_{p}-\alpha_{p}^{*}\right]
    \end{gathered} \nonumber \]

    But from equation (i)

    \[\frac{\varepsilon-\varepsilon^{*}}{c_{j}}=\phi\left(E_{p j}\right)-\phi\left(E_{S j} ; \operatorname{def}\right)-\varepsilon^{*} \, \phi\left(V_{j}\right) \nonumber \]

    Equations having similar form for \(\left(\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right),\left(\sigma-\sigma^{*}\right)\) and \(\left(\alpha_{p}-\alpha_{p}^{*}\right)\) are readily generated. Hence

    \[\begin{aligned}
    \phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\phi\left(\mathrm{E}_{\mathrm{Sj}} ; \mathrm{def}\right) &=\frac{\varepsilon}{\kappa_{\mathrm{T}}} \,\left[\phi\left(\mathrm{K}_{\mathrm{Tj}}\right)-\kappa_{\mathrm{T}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \,\left[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\sigma^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    &-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\alpha_{\mathrm{p}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\varepsilon^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned} \nonumber \]

    Therefore

    \[\begin{aligned}
    \phi\left(E_{\mathrm{pj}}\right)-\phi\left(E_{\mathrm{Sj}} ; \operatorname{def}\right) &=-\frac{\varepsilon}{\alpha_{\mathrm{p}}} \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)+\frac{\varepsilon}{\kappa_{\mathrm{T}}} \, \phi\left(\mathrm{K}_{\mathrm{Tj}}\right)+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \\
    &+\left[\varepsilon * \,\left(1+\frac{\alpha_{\mathrm{p}}^{*}}{\alpha_{\mathrm{p}}}\right)-\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}}} \,\left(1+\frac{\sigma^{*}}{\sigma}\right)\right] \, \phi\left(\mathrm{V}_{\mathrm{j}}\right) \quad(\mathrm{m})
    \end{aligned} \nonumber \]

    In the limit of infinite dilution,

    \[\frac{\phi\left(E_{\mathrm{pj}}\right)^{\infty}-\phi\left(\mathrm{E}_{\mathrm{Sj}} ; \mathrm{def}\right)^{\infty}}{\varepsilon_{1}^{*}(\ell)}=-\frac{\phi\left(\mathrm{E}_{\mathrm{pj}}\right)^{\infty}}{\alpha_{\mathrm{p} 1}^{*}(\ell)}+\frac{\phi\left(\mathrm{K}_{\mathrm{T}}\right)^{\infty}}{\kappa_{\mathrm{Tl}}^{*}(\ell)}+\frac{\phi\left(\mathrm{C}_{\mathrm{pj}}\right)^{\infty}}{\sigma_{1}^{*}(\ell)} \nonumber \]


    This page titled 1.12.23: Expansions- The Difference is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.