Skip to main content
Chemistry LibreTexts

1.12.23: Expansions- The Difference

  • Page ID
    377821
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a solution,

    \[\varepsilon=\alpha_{p}-\alpha_{s}=\kappa_{T} \, \sigma / T \, \alpha_{p}\]

    In order to simplify the algebra, we omit (aq) and (\(\ell\)) when describing the properties of an aqueous solution and the pure liquid respectively. Superscript '*' identifies the pure solvent.

    \[\varepsilon^{*}=\alpha_{\mathrm{p}}^{*}-\alpha_{\mathrm{S}}^{*}=\kappa_{\mathrm{T}}^{*} \, \sigma^{*} / \mathrm{T} \, \alpha_{\mathrm{p}}^{*}\]

    Hence,

    \[\varepsilon-\varepsilon^{*}=\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \,\left[\kappa_{\mathrm{T}} \, \sigma-\kappa_{\mathrm{T}}^{*} \, \sigma^{*}\right]-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right]\]

    The latter equation is effectively an identity. According to equation (c)

    \[\varepsilon-\varepsilon=\varepsilon-\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \, \kappa_{\mathrm{T}}^{*} \, \sigma^{*}-\varepsilon+\frac{\varepsilon}{\alpha_{\mathrm{p}}} \, \alpha_{\mathrm{p}}^{*}\]

    We use equations (a) and (b) in the second and fourth terms on the right hand side of the latter equation.

    \[\varepsilon-\varepsilon^{*}=\varepsilon-\frac{\varepsilon}{\kappa_{\mathrm{T}} \, \sigma} \, \varepsilon^{*} \, \mathrm{T} \, \alpha_{\mathrm{p}}^{*}-\varepsilon^{*}+\frac{\varepsilon^{*} \, \alpha_{\mathrm{p}}^{*} \, \mathrm{T} \, \varepsilon}{\kappa_{\mathrm{T}} \, \sigma}\]

    Or \(\varepsilon-\varepsilon^{*}=\varepsilon-\varepsilon^{*}\) Further, as an identity,

    \[\kappa_{\mathrm{T}} \, \sigma-\kappa_{\mathrm{T}}^{*} \, \sigma^{*}=\sigma \,\left(\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right)+\kappa_{\mathrm{T}}^{*} \,\left(\sigma-\sigma^{*}\right)\]

    From equation (c),

    \[\varepsilon-\varepsilon^{*}=\frac{\varepsilon}{\kappa_{\mathrm{T}}} \,\left[\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right]+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \,\left(\sigma-\sigma^{*}\right)-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}\right]\]

    But

    \[\phi\left(\mathrm{E}_{\mathrm{sj}} ; \mathrm{def}\right)=\frac{\alpha_{\mathrm{s}}-\alpha_{\mathrm{s}}^{*}}{\mathrm{c}_{\mathrm{j}}}+\alpha_{\mathrm{s}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\]

    The analogue for \(\phi\left(E_{p j}\right)\) is the following equation. \(\phi\left(\mathrm{E}_{\mathrm{pj}}\right)=\frac{\alpha_{\mathrm{p}}-\alpha_{\mathrm{p}}^{*}}{\mathrm{c}_{\mathrm{j}}}+\alpha_{\mathrm{p}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\) Hence

    \[\phi\left(E_{p j}\right)-\phi\left(E_{S_{j}} ; \operatorname{def}\right)=\frac{\varepsilon-\varepsilon^{*}}{c_{j}}+\varepsilon^{*} \, \phi\left(V_{j}\right)\]

    From equation (g), dividing by \(\mathrm{c}_{j}\),

    \[\begin{gathered}
    \frac{\varepsilon-\varepsilon}{c_{j}}=\frac{\varepsilon}{\kappa_{T}} \, \frac{1}{c_{j}} \,\left[\kappa_{T}-\kappa_{T}^{*}\right]+\frac{\varepsilon \, \kappa_{T}^{*}}{\kappa_{T} \, \sigma} \, \frac{1}{c_{j}} \,\left[\sigma-\sigma^{*}\right] \\
    -\frac{\varepsilon^{*}}{\alpha_{p}} \, \frac{1}{c_{j}} \,\left[\alpha_{p}-\alpha_{p}^{*}\right]
    \end{gathered}\]

    But from equation (i)

    \[\frac{\varepsilon-\varepsilon^{*}}{c_{j}}=\phi\left(E_{p j}\right)-\phi\left(E_{S j} ; \operatorname{def}\right)-\varepsilon^{*} \, \phi\left(V_{j}\right)\]

    Equations having similar form for \(\left(\kappa_{\mathrm{T}}-\kappa_{\mathrm{T}}^{*}\right),\left(\sigma-\sigma^{*}\right)\) and \(\left(\alpha_{p}-\alpha_{p}^{*}\right)\) are readily generated. Hence

    \[\begin{aligned}
    \phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\phi\left(\mathrm{E}_{\mathrm{Sj}} ; \mathrm{def}\right) &=\frac{\varepsilon}{\kappa_{\mathrm{T}}} \,\left[\phi\left(\mathrm{K}_{\mathrm{Tj}}\right)-\kappa_{\mathrm{T}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \,\left[\phi\left(\mathrm{C}_{\mathrm{pj}}\right)-\sigma^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right] \\
    &-\frac{\varepsilon^{*}}{\alpha_{\mathrm{p}}} \,\left[\phi\left(\mathrm{E}_{\mathrm{pj}}\right)-\alpha_{\mathrm{p}}^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)\right]+\varepsilon^{*} \, \phi\left(\mathrm{V}_{\mathrm{j}}\right)
    \end{aligned}\]

    Therefore

    \[\begin{aligned}
    \phi\left(E_{\mathrm{pj}}\right)-\phi\left(E_{\mathrm{Sj}} ; \operatorname{def}\right) &=-\frac{\varepsilon}{\alpha_{\mathrm{p}}} \, \phi\left(\mathrm{E}_{\mathrm{pj}}\right)+\frac{\varepsilon}{\kappa_{\mathrm{T}}} \, \phi\left(\mathrm{K}_{\mathrm{Tj}}\right)+\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}} \, \sigma} \, \phi\left(\mathrm{C}_{\mathrm{pj}}\right) \\
    &+\left[\varepsilon * \,\left(1+\frac{\alpha_{\mathrm{p}}^{*}}{\alpha_{\mathrm{p}}}\right)-\frac{\varepsilon \, \kappa_{\mathrm{T}}^{*}}{\kappa_{\mathrm{T}}} \,\left(1+\frac{\sigma^{*}}{\sigma}\right)\right] \, \phi\left(\mathrm{V}_{\mathrm{j}}\right) \quad(\mathrm{m})
    \end{aligned}\]

    In the limit of infinite dilution,

    \[\frac{\phi\left(E_{\mathrm{pj}}\right)^{\infty}-\phi\left(\mathrm{E}_{\mathrm{Sj}} ; \mathrm{def}\right)^{\infty}}{\varepsilon_{1}^{*}(\ell)}=-\frac{\phi\left(\mathrm{E}_{\mathrm{pj}}\right)^{\infty}}{\alpha_{\mathrm{p} 1}^{*}(\ell)}+\frac{\phi\left(\mathrm{K}_{\mathrm{T}}\right)^{\infty}}{\kappa_{\mathrm{Tl}}^{*}(\ell)}+\frac{\phi\left(\mathrm{C}_{\mathrm{pj}}\right)^{\infty}}{\sigma_{1}^{*}(\ell)}\]


    This page titled 1.12.23: Expansions- The Difference is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.