Skip to main content
Chemistry LibreTexts

1.9.3: Entropy and Spontaneous Reaction

  • Page ID
    375466
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It is often stated that the entropy of a system is a maximum at equilibrium. This is not generally true and is certainly not the case for closed systems at either (a) fixed \(\mathrm{T}\) and \(\mathrm{p}\), or (b) fixed \(\mathrm{T}\) and \(\mathrm{V}\).

    We rewrite the Master Equation in the following way:

    \[\mathrm{dS}=(1 / \mathrm{T}) \, \mathrm{dU}+(\mathrm{p} / \mathrm{T}) \, \mathrm{dV}+(\mathrm{A} / \mathrm{T}) \, \mathrm{d} \xi ; \mathrm{A} \, \mathrm{d} \xi \geq \text { zero }\]

    Temperature \(\mathrm{T}\) is positive and non-zero. At constant energy and constant volume (i.e. isoenergetic and isochoric), spontaneous processes are accompanied by an increase in entropy. This statement is important in statistical thermodynamics where the condition, ‘constant \(\mathrm{U}\) and constant \(\mathrm{V}\)’ is important.

    The following equation defines the enthalpy \(\mathrm{H}\) of a closed system.

    \[\mathrm{H}=\mathrm{U}+\mathrm{p} \, \mathrm{V}\]

    Then

    \[\mathrm{dU}=\mathrm{dH}-\mathrm{p} \, \mathrm{dV}-\mathrm{V} \, \mathrm{dp}\]

    From equation (a),

    \[\mathrm{dS}=(1 / \mathrm{T}) \, \mathrm{dH}-(\mathrm{p} / \mathrm{T}) \, \mathrm{dV}-(\mathrm{V} / \mathrm{T}) \, \mathrm{dp}+(\mathrm{p} / \mathrm{T}) \, \mathrm{dV}+(\mathrm{A} / \mathrm{T}) \, \mathrm{d} \xi \text { with } \mathrm{A} \, \mathrm{d} \xi \geq \text { zero }\]

    Hence,

    \[\mathrm{dS}=(1 / \mathrm{T}) \, \mathrm{dH}-(\mathrm{V} / \mathrm{T}) \, \mathrm{dp}+(\mathrm{A} / \mathrm{T}) \, \mathrm{d} \xi ; \mathrm{A} \, \mathrm{d} \xi \geq \text { zero }\]

    Temperature \(\mathrm{T}\) is always positive. Hence at constant enthalpy and pressure (i.e. iso-enthalpic and isobaric) all spontaneous processes produce an increase in entropy.

    We have identified two sets of conditions under which an increase in entropy accompanies a spontaneous process. If we follow through a similar argument with respect to the Gibbs energy, the outcome is not straightforward. By definition,

    \[\mathrm{G}=\mathrm{H}-\mathrm{T} \, \mathrm{S}\]

    Then

    \[\mathrm{dG}=\mathrm{dH}-\mathrm{T} \, \mathrm{dS}-\mathrm{S} \, \mathrm{dT}\]

    Or,

    \[\mathrm{S}=-\mathrm{dG} / \mathrm{dT}+\mathrm{dH} / \mathrm{dT}-\mathrm{T} \, \mathrm{dS} / \mathrm{dT}\]

    But from equation (e)

    \[\mathrm{dH} / \mathrm{dT}=\mathrm{T} \, \mathrm{dS} / \mathrm{dT}+(\mathrm{V} / \mathrm{T}) \, \mathrm{dp} / \mathrm{dT}-(\mathrm{A} / \mathrm{T}) \, \mathrm{d} \xi / \mathrm{dT}\]

    Hence,

    \[\mathrm{S}=-(\mathrm{dG} / \mathrm{dT})+\mathrm{V} \,(\mathrm{dp} / \mathrm{dT})-\mathrm{A} \,(\mathrm{d} \xi / \mathrm{dT}) \text { with } \mathrm{A} \, \mathrm{d} \xi \geq \text { zero }\]

    Clearly no definite conclusions can be drawn about changes in entropy S under isobaric - isothermal conditions. We stress these points because again it is often tempting to link, misguidedly, entropies to the degree of ‘muddled-up-ness’. This is the basis of many explanations of entropy. For example, neither the volume nor energy of a deck of cards change on shuffling. Whether what actually happens on shuffling a new well-ordered deck of cards clarifies the meaning of entropy seems doubtful.


    This page titled 1.9.3: Entropy and Spontaneous Reaction is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.