Skip to main content
Chemistry LibreTexts

1.9.2: Entropy- Dependence on Temperature and Pressure

  • Page ID
    375465
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The volume of a given closed system at equilibrium prepared using \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of solute-\(j\) is defined by the set of independent variables shown in equation (a).

    \[\mathrm{V}=\mathrm{V}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \mathrm{A}=0, \xi^{\mathrm{eq}}\right]\]

    The same set of independent variables defines the entropy \(\mathrm{S}\).

    \[\mathrm{S}=\mathrm{S}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \mathrm{A}=0, \xi^{\mathrm{eq}}\right]\]

    We envisage that the system is displaced by a change in pressure along a path where the system remains at equilibrium (i.e. \(\mathrm{A} = 0\)) and the volume remains the same as defined by equation (a). In a plot of entropy against \(\mathrm{p}\), the gradient of the plot at the point defined by the independent variables, \(\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \mathrm{A}=0, \boldsymbol{\xi}^{\mathrm{eq}}\right]\) is given by equation (c).

    Isochoric

    \[\left(\frac{\partial S}{\partial p}\right)_{V, A=0}\]

    The set of derivatives is completed by the following partial derivatives.

    Isothermal

    \[\left(\frac{\partial \mathrm{S}}{\partial \mathrm{p}}\right)_{\mathrm{T}, \mathrm{A}=0}\]

    Isobaric

    \[\left(\frac{\partial S}{\partial T}\right)_{p, A=0}\]


    This page titled 1.9.2: Entropy- Dependence on Temperature and Pressure is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.