Skip to main content
Chemistry LibreTexts

1.8.13: Enthalpies- Liquid Mixtures

  • Page ID
    375302
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For an ideal binary liquid mixture the Gibbs energy at temperature T is given by equation (a).

    \[\mathrm{G}(\operatorname{mix} ; \mathrm{id})=\mathrm{n}_{1} \,\left[\mu_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1}\right)\right]+\mathrm{n}_{2} \,\left[\mu_{2}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{2}\right)\right]\]

    From the Gibbs-Helmholtz equation,

    \[\mathrm{H}(\operatorname{mix} ; \mathrm{id})=\mathrm{n}_{1} \, \mathrm{H}_{1}^{*}(\ell)+\mathrm{n}_{2} \, \mathrm{H}_{2}^{*}(\ell)\]

    Hence for an ideal binary liquid mixture,

    \[\mathrm{H}_{1}(\operatorname{mix} ; \mathrm{id})=\mathrm{H}_{1}^{*}(\ell) \text { and } \mathrm{H}_{2}(\operatorname{mix} ; \mathrm{id})=\mathrm{H}_{2}^{*}(\ell)\]

    The molar enthalpy of a real binary liquid mixture is given by equation (d).

    \[\mathrm{H}_{\mathrm{m}}=\mathrm{x}_{1} \, \mathrm{H}_{1}(\operatorname{mix})+\mathrm{x}_{2} \, \mathrm{H}_{2}(\operatorname{mix})\]

    Therefore the molar enthalpy of mixing for a real binary liquid mixture is given by equation (e).

    \[\Delta_{\text {mix }} H_{m}=x_{1} \,\left[H_{1}(\operatorname{mix})-H_{1}^{*}(\ell)\right]+x_{2} \,\left[H_{2}(\operatorname{mix})-H_{2}^{*}(\ell]\right.\]

    Significantly equations (b) and (e) show that the molar enthalpy of mixing of an ideal binary liquid mixture, \(\Delta_{\text {mix }} H_{m}(\mathrm{id})\) is zero. The latter condition offers an important point of reference for isobaric calorimetry. [1] If we discover that the mixing of two liquids (at constant pressure) is not zero, the measured molar heat of mixing [\(=\Delta_{\text {mix }} \mathrm{H}_{\mathrm{m}}\)] is an immediate indicator of the extent to which the properties of a given mixture are not ideal.

    Nevertheless it is important to set down a link between the measured enthalpies of mixing with the activity coefficients of two liquid components. To this end we start with the equation for the chemical potentials of liquid component 1 in a liquid mixture at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) (which is close to ambient); equation (f).

    \[\mu_{1}(\mathrm{mix})=\mu_{1}^{*}(\ell)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{x}_{1} \, \mathrm{f}_{1}\right)\]

    where

    \[\operatorname{limit}\left(x_{1} \rightarrow 1\right) f_{1}=1 \text { at all } T \text { and } p \text {. }\]

    The Gibbs - Helmholtz equation yields an equation for the partial molar enthalpy of component 1 in the liquid mixture. Thus

    \[\mathrm{H}_{1}(\operatorname{mix})=\mathrm{H}_{1}^{*}(\ell)-\mathrm{R} \, \mathrm{T}^{2} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\]

    Similarly,

    \[\mathrm{H}_{2}(\operatorname{mix})=\mathrm{H}_{2}^{*}(\ell)-\mathrm{R} \, \mathrm{T}^{2} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\]

    Hence,

    \[\begin{aligned}
    &\mathrm{H}_{\mathrm{m}}(\operatorname{mix})= \\
    &\quad \mathrm{H}_{\mathrm{m}}(\operatorname{mix} ; \mathrm{id})-\mathrm{R} \, \mathrm{T}^{2} \,\left\{\mathrm{x}_{1} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}+\mathrm{x}_{2} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\right\}
    \end{aligned}\]

    We also obtain equations for the excess molar enthalpies of the two components (at defined \(\mathrm{T}\) and \(\mathrm{p}\)).

    \[\mathrm{H}_{1}^{\mathrm{E}}(\mathrm{mix})=-\mathrm{R} \, \mathrm{T}^{2} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\]

    and

    \[\mathrm{H}_{2}^{\mathrm{E}}(\mathrm{mix})=-\mathrm{R} \, \mathrm{T}^{2} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\]

    The excess molar enthalpy,

    \[\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}(\text { mix })=-\mathrm{R} \, \mathrm{T}^{2} \,\left\{\mathrm{x}_{1} \,\left[\partial \ln \left(\mathrm{f}_{1}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}+\mathrm{x}_{2} \,\left[\partial \ln \left(\mathrm{f}_{2}\right) / \partial \mathrm{T}\right]_{\mathrm{p}}\right\}\]

    At fixed pressure, the differential dependence of \(\mathrm{H}_{\mathrm{m}}^{\mathrm{E}}(\operatorname{mix})\) on temperature yields the corresponding excess isobaric heat capacity of mixing.

    Footnotes

    [1] J. B. Ott and C. J. Wormald, Experimental Thermodynamics, IUPAC Chemical Data Series, No. 39, ed. K. N. Marsh and P. A. G. O’Hara, Blackwell, Oxford, 1994, chapter 8.


    This page titled 1.8.13: Enthalpies- Liquid Mixtures is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?