Skip to main content
Chemistry LibreTexts

1.8.2: Enthalpy

  • Page ID
    374765
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    There is considerable merit in identifying an extensive property of a closed system called the enthalpy, \(\mathrm{H}\). The enthalpy of a closed system is a state variable and defined by equation (a).

    \[\mathrm{H}=\mathrm{U}+\mathrm{p} \, \mathrm{V}\]

    We identify a given state by the symbol I having enthalpy \(\mathrm{H}[\mathrm{I}]\), energy \(\mathrm{U}[\mathrm{I}]\) and volume \(\mathrm{V}[\mathrm{I}]\) at pressure \(\mathrm{p}\).

    \[\mathrm{H}[\mathrm{I}]=\mathrm{U}[\mathrm{I}]+\mathrm{p} \, \mathrm{V}[\mathrm{I}]\]

    This system is displaced to a neighbouring state such that the differential change in enthalpy is \(\mathrm{dH}\). Using equation (a),

    \[\mathrm{dH}=\mathrm{dU}+\mathrm{p} \, \mathrm{dV}+\mathrm{V} \, \mathrm{dp}\]

    But according to the first law of thermodynamics, the differential change in thermodynamic energy \(\mathrm{dU}\) is given by ‘\(q-p \, d V\)’ where \(\mathrm{q}\) is the heat accompanying the change. Then,

    \[\mathrm{dH}=\mathrm{q}-\mathrm{p} \, \mathrm{dV}+\mathrm{p} \, \mathrm{dV}+\mathrm{V} \, \mathrm{dp}\]

    or,

    \[\mathrm{dH}=\mathrm{q}+\mathrm{V} \, \mathrm{dp}\]

    At constant pressure,

    \[\mathrm{dH}=\mathrm{q}\]

    For a change from state I to state II the change in enthalpy is given by equation (g).

    \[\Delta \mathrm{H}=\int_{\mathrm{I}}^{\mathrm{II}} \mathrm{dH}=\mathrm{H}(\mathrm{II})-\mathrm{H}(\mathrm{I})=\mathrm{q}\]

    In equation (g) we replace the integral of dH by the difference \(\mathrm{H}(\mathrm{II}) - \mathrm{H}(\mathrm{I})\) because enthalpy is a state variable and so \(\Delta \mathrm{H}\) is independent of the path between the two states and hence so is \(\mathrm{q}\). In liquid solutions, the recorded heat is also independent of the rate of change in chemical composition between state I and state II.


    This page titled 1.8.2: Enthalpy is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?