Skip to main content
Chemistry LibreTexts

1.8.1: Enthalpies and Gibbs Energies

  • Page ID
    374764
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    By definition, the Gibbs energy,

    \[\mathrm{G}=\mathrm{U}+\mathrm{p} \, \mathrm{V}-\mathrm{T} \, \mathrm{S}\]

    Enthalpy,

    \[\mathrm{H}=\mathrm{U}+\mathrm{p} \, \mathrm{V}\]

    Combination of equations (a) and (b) yields an important equation relating Gibbs energy \(\mathrm{G}\) and enthalpy \(\mathrm{H}\).

    \[\mathrm{G}=\mathrm{H}-\mathrm{T} \, \mathrm{S}\]

    Just as we can never know the thermodynamic energy of a system, so we can never know the enthalpy. Consequently analysis of enthalpies is more complicated than analysis of volumetric properties, bearing in mind that the density of a solution (liquid) can be accurately measured. Differences are therefore emphasised in the context of enthalpies.

    A differential change in Gibbs energy at constant temperature is related to the changes in enthalpy \(\mathrm{dH}\) and entropy, \(\mathrm{dS}\).

    \[\mathrm{dG}=\mathrm{dH}-\mathrm{T} \, \mathrm{dS}\]

    For an isothermal process from state I to state II, the change in Gibbs energy \(\Delta \mathrm{G}\) is given by equation (e).

    \[\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \, \Delta \mathrm{S}\]

    Equation (e) signals how enthalpy and entropy changes determine the change in Gibbs energy.

    A closed system at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) is prepared using \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of solute-\(j\). The system is at equilibrium such that the composition/organisation is represented by \(\xi^{\mathrm{eq}}\) and the affinity for spontaneous change is zero. Using an over-defined representation we define the system as follows.

    \[\mathrm{G}^{\mathrm{eq}}=\mathrm{G}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right]\]

    Under such circumstances the Gibbs energy \(\mathrm{G}\) is a minimum \(\mathrm{G}^{\mathrm{eq}}\) when plotted as a function of \(\xi\). The enthalpy of this system can be defined using a similar equation.

    \[\mathrm{H}^{\mathrm{eq}}=\mathrm{H}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right]\]

    It is unlikely that \(\mathrm{H}^{\mathrm{eq}}\) corresponds to a minimum in the plot of enthalpy \(\mathrm{H}\) against \(\xi\). Indeed the same comment applies to the entropy \(\mathrm{S}^{\mathrm{eq}}\);

    \[\mathrm{S}^{\mathrm{eq}}=\mathrm{S}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right]\]

    The plots showing the product \(\mathrm{T} \, \mathrm{S}\) and \(\mathrm{H}\) against \(\xi\) may not show extrema though taken together they produce a minimum in \(\mathrm{G}\) at \(\xi^{\mathrm{eq}}\).

    \[\mathrm{G}^{e q}=\mathrm{H}^{e q}-\mathrm{T} \, \mathrm{S}^{e q}\]


    This page titled 1.8.1: Enthalpies and Gibbs Energies is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?