Skip to main content
Chemistry LibreTexts

1.8.1: Enthalpies and Gibbs Energies

  • Page ID
    374764
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    By definition, the Gibbs energy,

    \[\mathrm{G}=\mathrm{U}+\mathrm{p} \, \mathrm{V}-\mathrm{T} \, \mathrm{S} \nonumber \]

    Enthalpy,

    \[\mathrm{H}=\mathrm{U}+\mathrm{p} \, \mathrm{V} \nonumber \]

    Combination of equations (a) and (b) yields an important equation relating Gibbs energy \(\mathrm{G}\) and enthalpy \(\mathrm{H}\).

    \[\mathrm{G}=\mathrm{H}-\mathrm{T} \, \mathrm{S} \nonumber \]

    Just as we can never know the thermodynamic energy of a system, so we can never know the enthalpy. Consequently analysis of enthalpies is more complicated than analysis of volumetric properties, bearing in mind that the density of a solution (liquid) can be accurately measured. Differences are therefore emphasised in the context of enthalpies.

    A differential change in Gibbs energy at constant temperature is related to the changes in enthalpy \(\mathrm{dH}\) and entropy, \(\mathrm{dS}\).

    \[\mathrm{dG}=\mathrm{dH}-\mathrm{T} \, \mathrm{dS} \nonumber \]

    For an isothermal process from state I to state II, the change in Gibbs energy \(\Delta \mathrm{G}\) is given by equation (e).

    \[\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \, \Delta \mathrm{S} \nonumber \]

    Equation (e) signals how enthalpy and entropy changes determine the change in Gibbs energy.

    A closed system at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\) is prepared using \(\mathrm{n}_{1}\) moles of solvent (water) and \(\mathrm{n}_{j}\) moles of solute-\(j\). The system is at equilibrium such that the composition/organisation is represented by \(\xi^{\mathrm{eq}}\) and the affinity for spontaneous change is zero. Using an over-defined representation we define the system as follows.

    \[\mathrm{G}^{\mathrm{eq}}=\mathrm{G}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right] \nonumber \]

    Under such circumstances the Gibbs energy \(\mathrm{G}\) is a minimum \(\mathrm{G}^{\mathrm{eq}}\) when plotted as a function of \(\xi\). The enthalpy of this system can be defined using a similar equation.

    \[\mathrm{H}^{\mathrm{eq}}=\mathrm{H}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right] \nonumber \]

    It is unlikely that \(\mathrm{H}^{\mathrm{eq}}\) corresponds to a minimum in the plot of enthalpy \(\mathrm{H}\) against \(\xi\). Indeed the same comment applies to the entropy \(\mathrm{S}^{\mathrm{eq}}\);

    \[\mathrm{S}^{\mathrm{eq}}=\mathrm{S}^{\mathrm{eq}}\left[\mathrm{T}, \mathrm{p}, \mathrm{n}_{1}, \mathrm{n}_{\mathrm{j}}, \xi^{\mathrm{eq}}, \mathrm{A}=0\right] \nonumber \]

    The plots showing the product \(\mathrm{T} \, \mathrm{S}\) and \(\mathrm{H}\) against \(\xi\) may not show extrema though taken together they produce a minimum in \(\mathrm{G}\) at \(\xi^{\mathrm{eq}}\).

    \[\mathrm{G}^{e q}=\mathrm{H}^{e q}-\mathrm{T} \, \mathrm{S}^{e q} \nonumber \]


    This page titled 1.8.1: Enthalpies and Gibbs Energies is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.