Skip to main content
Chemistry LibreTexts

1.4.4: Chemical Equilibria- Solutions- Ion Association

  • Page ID
    352526
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A given equilibrium in aqueous solution involves association of two ions to form a neutral solute.

    \[\text { Thus, } \quad \mathrm{M}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Z}(\mathrm{aq})\]

    The chemical equilibrium is described in terms of chemical potentials using the following equation in which we recognise that the reactant is a 1:1 salt.

    \[\mu^{0}\left(\mathrm{M}^{+} \mathrm{X}^{-} ; \mathrm{aq}\right)+2 \, \mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right) \, \gamma_{\pm}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right) / \mathrm{m}^{0}\right]^{\mathrm{eq}} = \mu^{0}(Z ; \mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left[\mathrm{m}(\mathrm{Z}) \, \gamma(\mathrm{Z}) / \mathrm{m}^{0}\right]^{\mathrm{cq}}\]

    In the latter equation, \(\gamma_{\pm}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right)\) is the mean ionic activity for salt \(\mathrm{M}^{+} \mathrm{X}^{-}\) in the aqueous solution.

    By definition, at fixed temperature \(\mathrm{T}\) and pressure \(p\) where this pressure is ambient and hence close to the standard pressure \(p^{0}\),

    \[\Delta_{\mathrm{r}} \mathrm{G}^{0}=\mu^{0}(\mathrm{Z} ; \mathrm{aq})-\mu^{0}\left(\mathrm{M}^{+} \mathrm{X}^{-} ; \mathrm{aq}\right)=-\mathrm{R} \, \mathrm{T} \, \ln \mathrm{K}^{0}\]

    where,

    \[\mathrm{K}^{0}=\left[\frac{\mathrm{m}(\mathrm{Z}) \, \gamma(\mathrm{Z}) / \mathrm{m}^{0}}{\mathrm{~m}^{2}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right) \, \gamma_{\pm}^{2}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right) /\left(\mathrm{m}^{0}\right)^{2}}\right]^{e q}\]

    In many cases, particularly for dilute solutions \(\gamma(\mathrm{Z})\) is approximately unity but rarely can one ignore the term \(\gamma_{\pm}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right)\).

    \[\text { By definition, } \mathrm{K}^{0}(\mathrm{app})=\left\{\mathrm{m}(\mathrm{Z}) \, \mathrm{m}^{0} /\left[\mathrm{m}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right)\right]^{2}\right\}^{\mathrm{eq}}\]

    \[\text { Then, } \ln \mathrm{K}^{0}(\text { app })=\ln \mathrm{K}^{0}+2 \ln \left[\gamma_{\pm}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right)\right]\]

    The solution may be so dilute that the mean ionic activity coefficient can be calculated using the Debye-Huckel Limiting Law (DHLL).

    \[\text { Hence } \quad \ln \mathrm{K}^{0}(\mathrm{app})=\ln \mathrm{K}^{0}-2 \, \mathrm{S}_{\gamma} \,\left[\mathrm{m}\left(\mathrm{M}^{+} \mathrm{X}^{-}\right) / \mathrm{m}^{0}\right] 11 / 2\]

    In this equation the negative sign signals that in real solutions the extent of ion association to form \(\mathrm{Z}(\mathrm{aq})\) is less than in the corresponding ideal solution because charge - charge interactions in real solutions stabilise the ions.


    This page titled 1.4.4: Chemical Equilibria- Solutions- Ion Association is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.