Skip to main content
Chemistry LibreTexts

1.4.3: Chemical Equilibria- Solutions- Simple Solutes

  • Page ID
    352525
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given chemical equilibrium involves association of two solutes \(\mathrm{X}(\mathrm{aq})\) and \(\mathrm{Y}(\mathrm{aq})\) to form solute \(\mathrm{Z}(\mathrm{aq})\).

    \[2 X(a q)+Y(a q) \rightleftharpoons 4 Z(a q) \nonumber \]

    Phase Rule. The aqueous solution is prepared using two chemical substances: substance \(\mathrm{Z}\) and solvent water. Hence \(\mathrm{C} = 2\). There are 2 phases: vapour and solution so \(\mathrm{P} = 2\). Then \(\mathrm{F} = 2\). Hence at fixed temperature and in a system prepared using mole fraction \(x_{\mathrm{Z}}\) of substance \(\mathrm{Z}\) (an intensive composition variable), the equilibrium vapour pressure and the equilibrium amounts of \(\mathrm{X}(\mathrm{aq})\), \(\mathrm{Y}(\mathrm{aq})\) and \(\mathrm{Z}(\mathrm{aq})\) are unique.

    \[\text { At equilibrium, } 2 \, \mu_{\mathrm{X}}^{\mathrm{eq}}(\mathrm{aq})+\mu_{\mathrm{Y}}^{\mathrm{eq}}(\mathrm{aq})=4 \, \mu_{\mathrm{Z}}^{\mathrm{eq}}(\mathrm{aq}) \nonumber \]

    At fixed \(\mathrm{T}\) and \(p\), assuming ambient pressure is close to the standard pressure \(p^{0}\),

    \[\begin{aligned}
    &2 \,\left[\mu_{\mathrm{X}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{X}} \, \gamma_{\mathrm{X}} / \mathrm{m}^{0}\right)^{\mathrm{eq}}\right] \\
    &\quad+\left[\mu_{\mathrm{Y}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{Y}} \, \gamma_{\mathrm{Y}} / \mathrm{m}^{0}\right)^{\mathrm{eq}}\right] \\
    &\quad=4 \,\left[\mu_{\mathrm{Z}}^{0}(\mathrm{aq})+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{m}_{\mathrm{Z}} \, \gamma_{\mathrm{Z}} / \mathrm{m}^{0}\right)^{\mathrm{eq}}\right]
    \end{aligned} \nonumber \]

    \[\text { where } \Delta_{\mathrm{r}} \mathrm{G}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{K}^{0}\right)=4 \, \mu_{\mathrm{Z}}^{0}(\mathrm{aq})-2 \, \mu_{\mathrm{X}}^{0}(\mathrm{aq})-\mu_{\mathrm{Y}}^{0}(\mathrm{aq}) \nonumber \]

    For this equilibrium at temperature \(\mathrm{T}\) and pressure \(p\),

    \[\mathrm{K}^{0}=\frac{\left(\mathrm{m}_{\mathrm{Z}}^{\mathrm{eq}} \, \gamma_{\mathrm{Z}}^{\mathrm{eq}} / \mathrm{m}^{0}\right)^{4}}{\left(\mathrm{~m}_{\mathrm{X}}^{\mathrm{eq}} \, \gamma_{\mathrm{X}}^{\mathrm{eq}} / \mathrm{m}^{0}\right)^{2} \,\left(\mathrm{m}_{\mathrm{Y}}^{\mathrm{eq}} \, \gamma_{\mathrm{Y}}^{\mathrm{eq}} / \mathrm{m}^{0}\right)} \nonumber \]

    If the solution is quite dilute, \(\gamma_{\mathrm{X}}^{\mathrm{eq}}\), \(\gamma_{\mathrm{Y}}^{\mathrm{eq}}\) and \gamma_{\mathrm{Z}}^{\mathrm{eq}} are effectively unity in the real solution at equilibrium. Then

    \[\mathrm{K}^{0}=\left(\mathrm{m}_{\mathrm{eq}}^{\mathrm{eq}} / \mathrm{m}^{0}\right)^{4} /\left(\mathrm{m}_{\mathrm{X}}^{\mathrm{eq}} / \mathrm{m}^{0}\right)^{2} \,\left(\mathrm{m}_{\mathrm{Y}}^{\mathrm{eq}} / \mathrm{m}^{0}\right) \nonumber \]

    \(\mathrm{K}^{0}\) is dimensionless. But the latter statement signals a common problem in this subject because chemists find it more convenient and informative to define a quantity \({\mathrm{K}_{\mathrm{m}}}^{0}\) in which the m0 terms in equation (f) [or its equivalent] have been removed.

    \[\text { Thus, } \mathrm{K}_{\mathrm{m}}^{0}=\left(\mathrm{m}_{\mathrm{Z}}^{\mathrm{eq}}\right)^{4} /\left(\mathrm{m}_{\mathrm{X}}^{\mathrm{eq}}\right)^{2} \,\left(\mathrm{m}_{\mathrm{Y}}^{\mathrm{eq}}\right) \nonumber \]

    Hence the units for \({\mathrm{K}_{\mathrm{m}}}^{0}\) signal the stoichiometry of the equilibrium whereas the dimensionless \(\mathrm{K}^{0}\) does not [1,2].

    Footnotes

    [1] As a consequence of the removal of the \(\mathrm{m}^{0}\) terms, \(\mathrm{K}^{0}\) quantities have units unless the equation for the chemical equilibrium is stoichiometrically balanced: e.g. n-moles of reactants form n-moles of products.

    But from equation (g), \(\mathrm{K}_{\mathrm{m}}^{0}=\left[\mathrm{mol} \mathrm{kg}^{-1}\right]^{4} \,\left[\mathrm{mol} \mathrm{kg}{ }^{-1}\right]^{-2} \,\left[\mathrm{mol} \mathrm{kg}^{-1}\right]^{-1}\) or \(\mathrm{K}_{\mathrm{m}}^{0}=\left[\mathrm{mol} \mathrm{} \mathrm{kg}^{-1}\right]\)

    If we write, \(\Delta_{\mathrm{r}} \mathrm{G}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{K}_{\mathrm{m}}^{0}\right)\)

    Then \(\Delta_{\mathrm{r}} \mathrm{G}^{0}=\left[\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right] \,[\mathrm{K}] \, \ln \left[\mathrm{mol} \mathrm{kg}{ }^{-1}\right]\)

    ln There is clearly a slight problem in handling a logarithm of a composition unit. There are two approaches to this problem. The first approach ignores the problem, which is unsatisfactory practice. The second approach is to ask - what happened to the composition unit and trace the problem back through the equations.

    [2] The impact of composition units in quantitative analysis of data was addressed by E. A. Guggenheim, Trans. Faraday Soc., 1937,33,607.


    This page titled 1.4.3: Chemical Equilibria- Solutions- Simple Solutes is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.