Skip to main content
Chemistry LibreTexts

10.1: Thermodynamic Relationships from dE, dH, dA and dG

  • Page ID
    151718
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In Chapter 9, we substitute \(dq^{rev} = TdS\), from the second law, into

    \[dE = dq + PdV \nonumber \]

    from the first law, to obtain, for any closed system undergoing a reversible change in which the only work is pressure–volume work, the fundamental equation, \(dE = TdS + PdV\). In view of the mathematical properties of state functions that we develop in Chapter 7, this result means that we can express the energy of the system as a function of entropy and volume, \(E = E\left(S,V\right)\). With this choice of independent variables, the total differential of \(E\) is

    \[(dE = {\left({\partial E}/{\partial S}\right)}_VdS + {\left({\partial E}/{\partial V}\right)}_SdV. \nonumber \]

    Equating these expressions for \(dE\), we find

    \[\left[{\left(\frac{\partial E}{\partial S}\right)}_V + T\right]dS + \left[{\left(\frac{\partial E}{\partial V}\right)}_S + P\right]dV\mathrm{=0} \nonumber \]

    for any such system. Since \(S\) and \(V\) are independent variables, this equation can be true for any arbitrary state of the system only if the coefficients of\(\mathrm{\ }dS\) and \(dV\) are each identically equal to zero. It follows that

    \[{\left(\frac{\partial E}{\partial S}\right)}_V = T \nonumber \]

    and

    \[{\left(\frac{\partial E}{\partial V}\right)}_S\mathrm{=-}P \nonumber \]

    Moreover, because dE is an exact differential, we have

    \[\frac{\partial }{\partial V}{\left(\frac{\partial E}{\partial S}\right)}_V = \frac{\partial }{\partial S}{\left(\frac{\partial E}{\partial V}\right)}_S \nonumber \]

    so that

    \[{\left(\frac{\partial T}{\partial V}\right)}_S\mathrm{=-}{\left(\frac{\partial P}{\partial S}\right)}_V \nonumber \]

    Using the result \(dH = TdS + VdP\), parallel arguments show that enthalpy can be expressed as a function of entropy and pressure, \(H = H\left(S,P\right)\), so that

    \[{\left(\frac{\partial H}{\partial S}\right)}_P = T \nonumber \]

    and

    \[{\left(\frac{\partial H}{\partial P}\right)}_S = V \nonumber \] and \[{\left(\frac{\partial T}{\partial P}\right)}_S = {\left(\frac{\partial V}{\partial S}\right)}_P \nonumber \]

    Since \(dA\mathrm{=-}SdT + PdV\), the Helmholtz free energy must be a function of temperature and volume, \(A = A\left(T,V\right)\), and we have

    \[{\left(\frac{\partial A}{\partial T}\right)}_V\mathrm{=-}S \nonumber \] and \[{\left(\frac{\partial A}{\partial V}\right)}_T\mathrm{=-}P \nonumber \] and \[{\left(\frac{\partial S}{\partial V}\right)}_T = {\left(\frac{\partial P}{\partial T}\right)}_V \nonumber \]

    Likewise, \(dG\mathrm{=-}SdT + VdP\) implies that the Gibbs free energy is a function of temperature and pressure, \(G = G\left(P,T\right)\), so that

    \[{\left(\frac{\partial G}{\partial T}\right)}_P\mathrm{=-}S \nonumber \]

    and

    \[{\left(\frac{\partial G}{\partial P}\right)}_T = V \nonumber \] and \[{\left(\frac{\partial V}{\partial T}\right)}_P\mathrm{=-}{\left(\frac{\partial S}{\partial P}\right)}_T \nonumber \]


    This page titled 10.1: Thermodynamic Relationships from dE, dH, dA and dG is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.