Skip to main content
Chemistry LibreTexts

9.21: The Entropy Change for A Spontaneous Process at Constant E and V

  • Page ID
    152096
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For any spontaneous process, we have \(dE={dq}^{spon}\)+\({dw}^{spon}\), which we can rearrange to \({dq}^{spon}=dE-{dw}^{spon}\). Substituting our result from Section 9.15, we have

    \[\hat{T}dS>dE-dw^{spon} \nonumber \] (spontaneous process)

    If the energy of the system is constant throughout the process, we have \(dE=0\) and

    \[\hat{T}{\left(dS\right)}_E>-dw^{spon} \nonumber \] (spontaneous process, constant energy)

    The spontaneous work is the sum of the pressure–volume work and the non-pressure–volume work, \(\ dw^{spon}={dw}^{spon}_{PV}+{dw}^{spon}_{NPV}\). If we introduce the further condition that the spontaneous process occurs while the volume of the system remains constant, we have \({dw}^{spon}_{PV}=0\). Making this substitution and repeating our earlier result for a reversible process, we have the parallel relationships

    \[{\left(dS\right)}_{EV}>\frac{-dw^{spon}_{NPV}}{\hat{T}} \nonumber \] (spontaneous process, constant \(E\) and \(V\))

    \[{\left(dS\right)}_{EV}=\frac{-dw^{spon}_{NPV}}{\hat{T}} \nonumber \] (reversible process, constant \(E\) and \(V\))

    (For a reversible process, \(T=\hat{T}\).) If the spontaneous process occurs while \(\hat{T}\) is constant, summing the incremental contributions to a finite change of state produces the parallel relationships

    \[{\left(\Delta S\right)}_{EV}>\frac{-w^{spon}_{NPV}}{\hat{T}} \nonumber \] (spontaneous process, constant \(E\), \(V\), and \(\hat{T}\))

    \[{\left(\Delta S\right)}_{EV}=\frac{-w^{spon}_{NPV}}{\hat{T}} \nonumber \] (reversible process, constant \(E\), \(V\), and \(\hat{T}\))

    Constant \(\hat{T}\) corresponds to the common situation in chemical experimentation in which we place a reaction vessel in a constant-temperature bath. If we introduce the further condition that only pressure–volume work is possible, we have \(dw^{spon}_{NPV}=0\). The parallel relationships become

    \[{\left(dS\right)}_{EV}>0 \nonumber \] (spontaneous process, constant \(E\) and \(V\), only \(PV\) work)

    \[{\left(dS\right)}_{EV}=0 \nonumber \] (reversible process, constant \(E\) and \(V\), only\(\ PV\) work)

    If the energy and volume are constant for a system in which only pressure–volume work is possible, the system is isolated. The conditions we have just derived are entirely equivalent to our earlier conclusions that \(dS=0\) and \(dS>0\) for an isolated system that is at equilibrium or undergoing a spontaneous change, respectively. Summing the incremental contributions to a finite change of state produces the parallel relationships

    \[{\left(\Delta S\right)}_{EV}>0 \nonumber \] (spontaneous process, only \(PV\) work)

    \[{\left(\Delta S\right)}_{EV}=0 \nonumber \] (reversible process, only \(PV\) work)

    The validity of these expressions is independent of any variation in either \(T\) or \(\hat{T}\).


    This page titled 9.21: The Entropy Change for A Spontaneous Process at Constant E and V is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform.