Skip to main content
Chemistry LibreTexts

23: Postulates of Quantum Mechanics

  • Page ID
    416099
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In order to understand deeper quantum mechanics, scientists have derived a series of axioms that result in what are called postulates of quantum mechanics. These are, in fact, assumptions that we need to make to understand how the measured reality relates with the mathematics of quantum mechanics. It is important to notice that the postulates are necessary for the interpretation of the theory, but not for the mathematics behind it. Regarding of whether we interpret it or not, the mathematics is complete and consistent. In fact, as we will see in the next chapter, several controversies regarding the interpretation of the mathematics are still open, and different philosophies have been developed to rationalize the results. Recall also that there are different ways of writing the equation of quantum mechanics, all equivalent to each other (i.e., Schrödinger’s differential formulation and Heisenberg’s algebraic formulation that we saw in chapter 3). For these reasons, there is not an agreement on the number of postulates that are necessary to interpret the theory, and some philosophy and/or formulation might require more postulates than others. In this chapter, we will discuss the six postulates, as they are usually presented in chemistry and introductory physics textbooks and as they relate with a basic statistical interpretation of quantum mechanics. Regardless of the philosophical consideration on the meanings and numbers of the postulate, as well as their physical origin, these statements will make the interpretation of the theory a little easier, as we will see in the next chapter.


    This page titled 23: Postulates of Quantum Mechanics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?