Skip to main content
Chemistry LibreTexts

19.1: The Free Particles

  • Page ID
    416086
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    By definition, the particle does not feel any external force, therefore \(V(x)=0\), and the TISEq is written simply:

    \[ - \dfrac{\hbar^2}{2m} \dfrac{d^2\psi}{dx^2} = E \psi(x). \label{20.1.1} \]

    This equation can be rearranged to:

    \[ \dfrac{d^2\psi}{dx^2} =- \dfrac{2mE}{\hbar^2} \psi(x), \label{20.1.2} \]

    which corresponds to a mathematical problem where the second derivative of a function should be equal to a constant, \(- \dfrac{2mE}{\hbar^2}\) multiplied by the function itself. Such a problem is easily solved by the function:

    \[ \psi(x) = A \exp(\pm ikx). \label{20.1.3} \]

    The first and second derivatives of this function are:

    \[\begin{equation} \begin{aligned} \dfrac{d \psi(x)}{dx} &= \pm ik A \exp(\pm ikx) = \pm ik \psi(x) \\ \dfrac{d^2 \psi(x)}{dx^2} &= \mp k^2 A \exp(\pm ikx) = -(\pm k^2) \psi(x). \end{aligned} \end{equation} \label{20.1.4} \]

    Comparing the second derivative in Equation \ref{20.1.4} with Equation \ref{20.1.2}, we immediately see that if we set:

    \[ k^2 = \dfrac{2mE}{\hbar^2}, \label{20.1.5} \]

    we solve the original differential equation. Considering de Broglie’s equation, Equation 17.5.4, we can replace \(k=\dfrac{p}{\hbar}\), to obtain:

    \[ E = \dfrac{k^2 \hbar^2}{2m} = \dfrac{p^2}{2m}, \label{20.1.6} \]

    which is exactly the classical value of the kinetic energy of a free particle moving in one direction of space. Since the function in Equation \ref{20.1.3} solves the Schrödinger equation for the free particle, it is called an eigenfunction (or eigenstate) of the TISEq. The energy result of Equation \ref{20.1.6} is called eigenvalue of the TISEq. Notice that, since \(k\) is continuous in the eigenfunction, the energy eigenvalue is also continuous (i.e., all values of \(E\) are acceptable).


    This page titled 19.1: The Free Particles is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?