Skip to main content
Chemistry LibreTexts

18.1: The Time-Independent Schrödinger Equation

  • Page ID
    416083
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We can start the derivation of the single-particle time-independent Schrödinger equation (TISEq) from the equation that describes the motion of a wave in classical mechanics:

    \[ \psi(x,t)=\exp[i(kx-\omega t)], \label{19.1.1} \]

    where \(x\) is the position, \(t\) is time, \(k=\dfrac{2\pi}{\lambda}\) is the wave vector, and \(\omega=2\pi\nu\) is the angular frequency of the wave. If we are not concerned with the time evolution, we can consider uniquely the derivatives of Equation \ref{19.1.1} with respect to the location, which are:

    \[ \begin{aligned} \dfrac{\partial \psi}{\partial x} &=ik\exp[i(kx-\omega t)] = ik\psi, \\ \dfrac{\partial^2 \psi}{\partial x^2} &=i^2k^2\exp[i(kx-\omega t)] = -k^2\psi, \end{aligned} \label{19.1.2} \]

    where we have used the fact that \(i^2=-1\).

    Assuming that particles behaves as wave—as proven by de Broglie’s we can now use the first of de Broglie’s equation, Equation 17.5.4, we can replace \(k=\dfrac{p}{\hbar}\) to obtain:

    \[ \dfrac{\partial^2 \psi}{\partial x^2} = -\dfrac{p^2\psi}{\hbar^2}, \label{19.1.3} \]

    which can be rearranged to:

    \[ p^2 \psi = -\hbar^2 \dfrac{\partial^2 \psi}{\partial x^2}. \label{19.1.4} \]

    The total energy associated with a wave moving in space is simply the sum of its kinetic and potential energies:

    \[ E = \dfrac {p^{2}}{2m} + V(x), \label{19.1.5} \]

    from which we can obtain:

    \[ p^2 = 2m[E - V(x)], \label{19.1.6} \]

    which we can then replace into Equation \ref{19.1.4} to obtain:

    \[ 2m[E-V(x)]\psi = - \hbar^2 \dfrac{\partial^2 \psi}{\partial x^2}, \label{19.1.7} \]

    which can then be rearranged to the famous time-independent Schrödinger equation (TISEq):

    \[ - \dfrac{\hbar^2}{2m} \dfrac{\partial^2 \psi}{\partial x^2} + V(x) \psi = E\psi, \label{19.1.8} \]

    A two-body problem can also be treated by this equation if the mass \(m\) is replaced with a reduced mass \(\mu = \dfrac{m_1 m_2}{m_1+m_2}\).


    This page titled 18.1: The Time-Independent Schrödinger Equation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?