Skip to main content
Chemistry LibreTexts

7.22: A Quantum Circuit for a Michelson Interferometer

  • Page ID
    141691
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Schematic diagram of a Mach‐Zehnder interferometer (MZI).

    Screen Shot 2019-02-28 at 5.35.32 PM.png

    The following quantum circuit simulates the MZI.

    Screen Shot 2019-02-28 at 5.36.19 PM.png

    The arms of the MZI are represented by the following orthonormal basis.

    \[ | 0 \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \nonumber \]

    \[ |1 \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber \]

    The matrices representing the Hadamard and phase shift gates are:

    \[ H = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \nonumber \]

    \[ A ( \theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i \phi} \end{pmatrix} \nonumber \]

    Step‐by‐step through the circuit. The first Hadamard gate creates a superposition of the |0 > and |1 > states. The phase shifter operates on the lower arm of the MZI. The final Hadamard gate allows interference between the two arms of the MZI.

    \[ H \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{ \sqrt{2}}{2} \\ \frac{ \sqrt{2}}{2} \end{pmatrix} \nonumber \]

    \[ A ( \phi) H \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{ \sqrt{2}}{2} \\ \frac{ \sqrt{2} e^{ \phi i}}{2} \end{pmatrix} \nonumber \]

    \[ H A ( \phi) H \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \frac{ e^{ \phi i}}{2} + \frac{1}{2} \\ \frac{1}{2} - \frac{ e^{ \phi i}}{2} \end{pmatrix} \nonumber \]

    Probability of detection at the |0 > port:

    \[ P_0 ( \phi) = \left[ \left| \begin{pmatrix} 1 & 0 \end{pmatrix} H A( \phi) H \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right| \right]^2 |_{simplify}^{assume,~ \phi = real} \rightarrow \frac{ \cos \phi}{2} + \frac{1}{2} \nonumber \]

    Probability of detection at the |1 > port:

    \[ P_1 ( \phi) = \left[ \left| \begin{pmatrix} 0 & 1 \end{pmatrix} H A( \phi) H \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right| \right]^2 |_{simplify}^{assume,~ \phi = real} \rightarrow \frac{1}{2} - \frac{ \cos \phi}{2} \nonumber \]

    A graphical representation of the above calculations shows the interference effects as a function of ϕ.

    Screen Shot 2019-02-28 at 5.48.34 PM.png


    This page titled 7.22: A Quantum Circuit for a Michelson Interferometer is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.