Skip to main content
Chemistry LibreTexts

7.21: Two Analyses of the Michelson Interferometer

  • Page ID
    141687
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Screen Shot 2019-02-28 at 5.02.00 PM.png

    Path difference between interferometer arms is δ. Phase accumulated due to path difference: \( exp \left( i \frac{2 \pi \delta}{ \lambda} \right) \)

    S stands for source, D for detector, T for transmitted and R for reflected. The evolution of the photon wave function at various stages is given below.

    \[ S = \frac{1}{ \sqrt{2}} (T + iR) \nonumber \]

    \[ T = \frac{ exp \left( i \frac{2 \pi \delta}{ \lambda} \right)}{ \sqrt{2}} (iD + S) \nonumber \]

    \[ R = \frac{1}{ \sqrt{2}} (D + iS) \nonumber \]

    \[ S = \frac{1}{ \sqrt{2}} (T +iR) |^{substitute,~T = \frac{exp \left( i \frac{2 \pi \delta}{ \lambda}\right)}{ \sqrt{2}} (iD+S)}_{substitute,~R = \frac{1}{ \sqrt{2}} (D + iS)} \rightarrow S = - \frac{S}{2} + \frac{S e^{ \frac{2i \pi \delta}{ \lambda}}}{2} + \frac{D e^{ \frac{2i \pi \delta}{ \lambda}}}{2} + \frac{Di}{2} \nonumber \]

    The probability the photon will arrive at the detector is the square of the absolute magnitude of the coefficient of D.

    \[ \frac{-1}{2} \left( e^{ \frac{-2 i \pi \delta}{ \lambda}} \right) \frac{1}{2} \left( e^{ \frac{-2 i \pi \delta}{ \lambda}} \right) simplify~ \rightarrow \sin \left( \frac{ \pi \delta}{ \lambda} \right)^2 \nonumber \]

    The same results are now illustrated using a matrix mechanics approach. Horizontal and vertical motion of the photon are represented by vectors. The source emits a horizontal photon, the detector receives a vertical photon. The beam splitter and the phase shift due to path length difference are represented by matrices. A matrix representation for the mirrors is unnecessary because the simply return the photon to the beam splitter.

    Horizontal motion: \( \begin{pmatrix} 1 \\ 0 \end{pmatrix}\)

    Vertical motion: \( \begin{pmatrix} 0 \\ 1 \end{pmatrix}\)

    Beam splitter:

    \[ BS = \begin{pmatrix} \frac{1}{ \sqrt{2}} & \frac{1}{ \sqrt{2}} \\ \frac{1}{ \sqrt{2}} & \frac{1}{ \sqrt{2}} \end{pmatrix} \nonumber \]

    Phase shift:

    \[ A ( \delta) = \begin{pmatrix} e^{2 i \pi \frac{ \delta}{ \lambda}} & 0 \\ 0 & 1 \end{pmatrix} \nonumber \]

    Calculate the probability amplitude and probability that the photon will arrive at the detector

    \[ \begin{pmatrix} 0 & 1 \end{pmatrix} BS \begin{pmatrix} e^{2 i \pi \frac{ \delta}{ \lambda}} & 0 \\ 0 & 1 \end{pmatrix} BS \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \frac{e^{ \frac{2i \pi \delta}{ \lambda}}}{2} + \frac{1}{2} i \nonumber \]

    \[ \left( \frac{e^{ \frac{-2i \pi \delta}{ \lambda} (-i)}}{2} + \frac{1}{2} (-i) \right) \left( \frac{e^{ \frac{2i \pi \delta}{ \lambda} (i)}}{2} + \frac{1}{2} i \right) simplify \rightarrow \cos \left( \frac{\pi \delta}{ \lambda}\right)^2 \nonumber \]

    Calculate the probability amplitude and probability that the photon will be returned to the source.

    \[ \begin{pmatrix} 1 & 0 \end{pmatrix} BS \begin{pmatrix} e^{2i \pi \frac{ \delta}{ \lambda}} & 0 \\ 0 & 1 \end{pmatrix} BS \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \frac{e ^{ \frac{2 i \pi \delta}{ \lambda}}}{2} - \frac{1}{2} \nonumber \]

    \[ \left( \frac{e^{ \frac{-2i \pi \delta}{ \lambda}}}{2} - \frac{1}{2} \right) \left( \frac{e^{ \frac{2i \pi \delta}{ \lambda}}}{2} - \frac{1}{2} \right) simplify \rightarrow \sin \left( \frac{\pi \delta}{ \lambda}\right)^2 \nonumber \]

    Plotting these results in units of λ yields:

    \[ \delta = 0, .01 .. 1 \nonumber \]

    Screen Shot 2019-02-28 at 5.32.27 PM.png


    This page titled 7.21: Two Analyses of the Michelson Interferometer is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.