Skip to main content
Chemistry LibreTexts

10.30: The Variation Method in Momentum Space

  • Page ID
    136979
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following normalized trial wavefunction is proposed for a variational calculation on the harmonic oscillator.

    \[ \psi (x, a) := \sqrt{ \frac{1}{a}} exp( \frac{-|x|}{a}) \nonumber \]

    \[ \int_{- \infty}^{ \infty} \psi (x, a)^2 dx~~~assume,~a > 0 \rightarrow 1 \nonumber \]

    However, the graph below shows a cusp at x = 0, indicating that the wavefunction is not well‐behaved and therefore cannot be used for quantum mechanical calculations.

    Screen Shot 2019-02-14 at 1.23.02 PM.png

    Therefore, the wavefunction is Fourier transformed into the momentum representation.

    \[ \Phi (p, a) := \int_{- \infty}^{ \infty} \frac{exp(-ipx)}{ \sqrt{2 \pi}} \sqrt{ \frac{1}{a}} exp( \frac{-|x|}{a}) dx~|_{simplify}^{assume,~a>0} \rightarrow (-a^{ \frac{1}{2}}) \frac{2^{ \frac{1}{2}}}{(ipa-1) \pi ^{ \frac{1}{2}} (ipa +1)} \nonumber \]

    Normalization is checked and the function is graphed.

    \[ \int_{- \infty}^{ \infty} \Phi (p, a)^2 dp~~~assume,~a > 0 \rightarrow 1 \nonumber \]

    Screen Shot 2019-02-14 at 1.23.08 PM.png

    The momentum wavefunction appears to be well‐behaved, so a variational calculation will be carried out in momentum space.

    Assuming a m = k =1 and h = 2π, we have for the harmonic oscillator in momentum space.

    • Momentum space integral: \( \int_{- \infty}^{ \infty} \blacksquare dp\)
    • Momentum operator: \( p \blacksquare\)
    • Kinetic energy operator: \( \frac{p^2}{2}\)
    • Position operator: \( i \frac{d}{dp} \blacksquare\)
    • Potential energy operator: \( \frac{-1}{2} \frac{d^2}{dp^2} \blacksquare\)

    Evaluate the energy integral in the momentum representation:

    \[ E(a) := \int_{- \infty}^{ \infty} \Phi (p, a) \frac{p^2}{2} \Phi (p, a) dp... + \int_{- \infty}^{ \infty} \Phi (p, a) \frac{-1}{2} \frac{d^2}{dp^2} \Phi (p, a) dp~|_{assume,~a >0}^{simplify} \rightarrow \frac{1}{4} \frac{2 + a^4}{a^2} \nonumber \]

    Minimize energy with respect to the variational parameter:

    a := 1 a := Minimize (E, a) a = 1.189 E(a) = 0.707

    Display optimum wavefunction along with exact wavefunction:

    \[ Exact(p) := \frac{1}{ \pi ^{ \frac{1}{4}}} e^{ \frac{-1}{2} p^2} \nonumber \]

    Screen Shot 2019-02-14 at 1.23.15 PM.png

    Naturally the agreement with the exact solution is not favorable because of the poor quality of the original coordinate space wavefunction.

    \[ \frac{E(a) - 0.5}{0.5} = 41.421 \nonumber \]


    This page titled 10.30: The Variation Method in Momentum Space is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.