# 10.28: Hydrogen Atom Calculation Assuming the Electron is a Particle in a Sphere of Radius R

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Trial wave function:

$\Phi (r, R) := \frac{1}{ \sqrt{2 \pi R}} \frac{ \sin ( \frac{ \pi r}{R})}{r} \nonumber$

Integral:

$\int_{0}^{ \infty} \blacksquare 4 \pi r^2 dr \nonumber$

Kinetic energy operator:

$T = \frac{1}{2r} \frac{d^2}{dr^2} (r \blacksquare ) \nonumber$

Potential energy operator:

$V = \frac{1}{r} \nonumber$

Demonstrate the wave function is normalized.

Set up the variational energy integral.

$E(R) := \int_{0}^{R} \Phi (r, R) [ \frac{-1}{2r} \frac{d^2}{dr^2} (r \Phi (r, R))] 4 \pi r^2 dr + \int_{0}^{R} \Phi (r, R) \frac{-1}{r} \Phi (r, R) 4 \pi r^2 dr] \nonumber$

Minimize the energy with respect to the variational parameter R.

R := 1 R := Minimize(E, R) R = 4.049 E(R) = -0.301

The exact ground state energy for the hydrogen atom is -.5 Eh. Calculate the percent error.

$\frac{-.5 - E(R)}{-.5} = 39.793 \nonumber$

Compare optimized trial wave function with the exact solution by plotting the radial distribution functions.

$S(r) := \frac{1}{ \sqrt{ \pi}} exp(-r)~~~r := 0,.02..4.2 \nonumber$

This page titled 10.28: Hydrogen Atom Calculation Assuming the Electron is a Particle in a Sphere of Radius R is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.