Skip to main content
Chemistry LibreTexts

10.8: Variation Method for the Quartic Oscillator

  • Page ID
    135915
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Approximate Methods: The Quartic Oscillator

    For unit mass the quartic oscillator has the following energy operator in atomic units.

    \( H = - \frac{1}{2} \frac{d^{2}}{dx^{2}} \blacksquare + kx^{4} \blacksquare\) \( \int_{- \infty}^{ \infty} \blacksquare dx\)

    Suggested trial wavefunction: \( \psi (x; \beta ) := ( \frac{2 \beta}{ \pi})^{ \frac{1}{4}} exp( - \beta x^{2})\)

    Demonstrate that the wavefunction is normalized.

    \[ \int_{- \infty}^{ \infty} \psi (x; \beta )^{2} dx~assume,~ \beta > 0 \rightarrow 1 \nonumber \]

    Evaluate the variational energy integral.

    \[ E( \beta ) := \int_{- \infty}^{ \infty} \psi (x, \beta ) - \frac{1}{2} \frac{d^{2}}{dx^{2}} \psi (x, \beta ) dx + \int_{- \infty}^{ \infty} \psi (x, \beta ) x^{4} \psi (x, \beta ) dx |_{simplify}^{assume,~ \beta > 0} \rightarrow \frac{1}{16} \frac{8 \beta ^{3}}{\beta ^{2}} \nonumber \]

    Minimize the energy with respect to the variational parameter \( \beta\) and report its optimum value and the ground-state energy.

    β := 1 β := Minimize(E, β) β = 0.90856 E(β) = 0.68142

    Plot the optimum wavefunction and the potential energy on the same graph.

    Screen Shot 2019-02-08 at 12.46.36 PM.png

    Calculate the classical turning point and the probability that tunneling is occurring.

    \[ \begin{align} x_{ctp} &= 0.68142^{ \frac{1}{4}} \\[4pt] &= 0.90856 \end{align} \nonumber \]

    \[ 2 \int_{x_{ctp}}^{ \infty} \psi (x, \beta )^{2} dx \approx 0.083265 \nonumber \]

    Compare the variational result to energy obtained by numerically integrating Schrödinger's equation for the quartic oscillator using the numerical integration algorithm provided below.

    Numerical Solutions for Schrödinger's Equation

    Integration limit: xmax := 3 Effective mass: μ := 1 Force constant: k := 1

    Potential energy: \( V(x) := kx^{4}\)

    Numerical integration of Schrödinger's equation:

    Given

    \( \frac{-1}{2 \mu} \frac{d^{2}}{dx^{2}} \Phi (x) + V(x) \Phi (x) = energy \Phi (x)\)

    \( \Phi (-x_{max} = 0\)

    \( \Phi '(-x_{max} = 0.1\)

    \( \Phi := Odesolve (x, x_{max}\)

    Normalize wavefunction: \( \Phi (x) := \frac{ \Phi (x)}{ \sqrt{ \int_{-x_{max}}^{x_{max}} \Phi (x) ^{2} dx}}\)

    Enter energy guess: Energy = 0.6679864

    Screen Shot 2019-02-08 at 12.53.09 PM.png

    Compare the variational and numerical solutions for the quartic oscillator by putting them on the same graph.

    Screen Shot 2019-02-08 at 12.53.15 PM.png


    This page titled 10.8: Variation Method for the Quartic Oscillator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.