7.25: A Quantum Optical Cheshire Cat
- Page ID
- 142062
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The following is a summary of "Quantum Cheshire Cats" by Aharonov, Popescu, Rohrlich and Skrzypczyk which was published in the New Journal of Physics 15, 113015 (2013) and can also be accessed at: arXiv:1202.0631v2.
In the absence of the half-wave plate (HWP) and the phase shifter (PS) a horizontally polarized photon entering the interferometer from the lower left (propagating to the upper right) arrives at D2 with a 90 degree (π/2, i) phase shift. (By convention reflection at a beam splitter introduces a 90 degree phase shift.)
\[ |R \rangle |H \rangle \xrightarrow{BS_1} \frac{1}{ \sqrt{2}} [ i | L \rangle + |R \rangle ] |H \rangle \xrightarrow{BS_2} i | D_2 \rangle | H \rangle \nonumber \]
The state immediately after the first beam splitter is the pre-selected state.
\[ | Psi \rangle = \frac{1}{ \sqrt{2}} \left[ i | L \rangle + | R \rangle \right] |H \rangle \nonumber \]
The post-selected state is,
\[ | \Phi \rangle = \frac{1}{ \sqrt{2}} \left[ | L \rangle |H \rangle + | R \rangle |V \rangle \right] \nonumber \]
The HWP (converts |V> to |H> in the R-branch) and PS transform this state to,
\[ | \Phi \rangle \xrightarrow[PS]{HWP} \frac{1}{ \sqrt{2}} \left[ | L \rangle + i | R \rangle \right] |H \rangle \nonumber \]
which exits the second beam splitter through the left port to encounter a polarizing beam splitter which transmits horizontal polarization and reflects vertical polarization. Thus, the post-selected state is detected at D1. The evolution of the post-selected state is summarized as follows:
\[ | \Phi \rangle = \frac{1}{ \sqrt{2}} \left[ |L \rangle |H \rangle + |R \rangle |V \rangle \right] \xrightarrow[PS]{HWP} \frac{1}{ \sqrt{2}} \left[ | L \rangle + i | R \rangle \right] |H \rangle \xrightarrow{BS_2} i |L \rangle |H \rangle \xrightarrow{PBS} i | D_1 \rangle |H \rangle \nonumber \]
The last term on the right side below is the weak value of A multiplied by the probability of its occurrence for the preselected state Ψ and the post-selected state Φ.
\[ \langle \Psi | \hat{A} | \Psi \rangle = \sum_j \langle \Psi | \Phi_j \rangle \langle \Phi_j | \hat{A} | \Psi \rangle = \sum_j \langle \Psi | \Phi_j \rangle \langle \Phi_j | \Psi \rangle \frac{ \langle \Phi_j | \hat{A} | \Psi \rangle}{ \langle \Phi_j | \Psi \rangle} = \sum_j p_j \frac{ \langle \Phi_j | \hat{A} | \Psi \rangle}{ \langle \Phi_j | \Psi \rangle} \nonumber \]
The weak value calculations are carried out in a 4-dimensional Hilbert space created by the tensor product of the photon's direction of propagation and polarization vectors.
Direction of propagation vectors:
\[ L = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \nonumber \]
\[ R = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber \]
Polarization state vectors:
\[ H = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \nonumber \]
\[ V = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \nonumber \]
Pre-selected state:
\[ \Psi = \frac{1}{ \sqrt{2}} (iL + R)H = \frac{1}{ \sqrt{2}} \left[ i \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = frac{1}{ \sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \nonumber \]
\[ \Psi = \frac{1}{ \sqrt{2}} \begin{pmatrix} i \\ 0 \\ 1 \\ 0 \end{pmatrix} \nonumber \]
Post-selected state:
\[ \Phi = \frac{1}{ \sqrt{2}} (LH + RV) = \frac{1}{ \sqrt{2}} \left[ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] \nonumber \]
\[ \Phi = \frac{1}{ \sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \nonumber \]
Direction of propagation operators:
\[ Left = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \nonumber \]
\[ Right = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \nonumber \]
Photon angular momentum operator:
\[ Pang = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \nonumber \]
Identity operator:
\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \nonumber \]
The following weak value calculations show that for the pre- and post-selection ensemble of observations the photon is in the left arm of the interferometer while its angular momentum is in the right arm. Like the case of the Cheshire cat, a photon property has been separated from the photon.
\[ \begin{pmatrix} "" & "Left ~Arm" & "Right ~Arm" \\ "Arm" & \frac{ \Phi^T kronecker(Left, ~I) \Psi}{ \Phi^T \Psi} & \frac{ \Phi^T kronecker(Right, ~I) \Psi}{ \Phi^T \Psi} \\ "Pang" & \frac{ \Phi^T kronecker(Left, ~Pang) \Psi}{ \Phi^T \Psi} & \frac{ \Phi^T kronecker(Right, ~Pang) \Psi}{ \Phi^T \Psi} \end{pmatrix} = \begin{pmatrix} "" & "Left~Arm" & "Right~Arm \\ "Arm" & 1 & 0 \\ "Pang" & 0 & 1 \end{pmatrix} \nonumber \]
The following shows the evolution of the pre-selected state to the final state at the detectors. The intermediate is the state illuminating BS2. The polarization state at the detectors is ignored.
\[ | \Psi \rangle \rightarrow \frac{i}{ \sqrt{2}} \left[ |L \rangle |H \rangle + |R \rangle |V \rangle \right] \rightarrow - \frac{1}{2} |D_1 \rangle + \frac{i}{2} | D_3 \rangle + \frac{(i-1)}{2} |D_2 \rangle \nonumber \]
Squaring the magnitude of the probability amplitudes shows that the probabilities that D1, D3 and D2 will fire are 1/4, 1/4 and 1/2, respectively. The probability at D1 is consistent with the probability that the post-selected state is contained in the pre-selected state. A photon in the post-selected state has a probability of 1 of reaching D1 and it represents a 25% contribution to the pre-selected state.
\[ (| \Phi^T \Psi |)^2 \rightarrow \frac{1}{4} \nonumber \]
Note that the expectation values for the pre-selected state show no path-polarization separation.
\[ \begin{pmatrix} "" & "Left~Arm" & "Right~Arm" \\ "Arm" & ( \overline{ \Psi})^T kronecker(Left,~I) \Psi & ( \overline{ \Psi})^T kronecker(Right,~I) \Psi \\ "Pang" & ( \overline{ \Psi})^T kronecker(Left,~Pang) \Psi & ( \overline{ \Psi})^T kronecker(Right,~Pang) \Psi \\ "Hop" & ( \overline{ \Psi})^T kronecker(Left,~HH^T) \Psi & ( \overline{ \Psi})^T kronecker(Right,~HH^T) \Psi \\ "Vop" & ( \overline{ \Psi})^T kronecker(Left,~VV^T) \Psi & ( \overline{ \Psi})^T kronecker(Right,~VV^T) \Psi \end{pmatrix} = \begin{pmatrix} "" & "Left~Arm" & "Right~Arm" \\ "Arm" & 0.5 & 0.5 \\ "Pang" & 0 & 0 \\ "Hop" & 0.5 & 0.5 \\ "Vop" & 0 & 0 \end{pmatrix} \nonumber \]
In addition the following table shows that linear polarization (HV) is not separated from the photon's path.
\[ HV = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \nonumber \]
\[ \begin{pmatrix} "" & "Left ~Arm" & "Right ~Arm" \\ "Arm" & \frac{ \Phi^T kronecker(Left, ~I) \Psi}{ \Phi^T \Psi} & \frac{ \Phi^T kronecker(Right, ~I) \Psi}{ \Phi^T \Psi} \\ "HV" & \frac{ \Phi^T kronecker(Left, ~HV) \Psi}{ \Phi^T \Psi} & \frac{ \Phi^T kronecker(Right, ~HV) \Psi}{ \Phi^T \Psi} \end{pmatrix} = \begin{pmatrix} "" & "Left~Arm" & "Right~Arm \\ "Arm" & 1 & 0 \\ "HV" & 1 & 0 \end{pmatrix} \nonumber \]
The "Complete Quantum Cheshire Cat" by Guryanova, Brunner and Popescu (arXiv 1203.4215) provides an optical set-up which achieves complete path-polarization separation for the photon.