Skip to main content
Chemistry LibreTexts

6.9: P₄

  • Page ID
    149287
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Td - Tetrahedral Symmetry for P4

    The following Raman and IR frequencies have been observed for the tetrahedral P4 molecule. Is the assignment of tetrahedral geometry to this molecule in agreement with the spectroscopic data? Explain.

    \[ \begin{pmatrix} R & R & R,IR \\ \frac{614}{ \text{cm}} & \frac{372}{ \text{cm}} & \frac{466}{ \text{cm}} \end{pmatrix} \nonumber \]

    Screen Shot 2019-05-02 at 4.13.31 PM.png

    \[ \begin{matrix} ~ & \begin{array} E E & C_3 & C_2 & S_4 & \sigma \end{array} \\ C_{Td} = & \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & 0 & 0 \\ 3 & 0 & -1 & 1 & -1 \\ 3 & 0 & -1 & -1 & 1 \end{pmatrix} & \begin{array} A A_1:~x^2 + y^2+z^2 \\ A_2 \\ E:~2z^2-x^2-y^2,~x^-y^2 \\ T_1:~(R_x,~R_y,~R_z) \\ T_2:~ (x,~y,~z),~(xy,~xz,~yz) \end{array} & Td = \begin{pmatrix} 1 \\ 8 \\ 3 \\ 6 \\ 6 \end{pmatrix} & \Gamma_{uma} = \begin{pmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 2 \end{pmatrix} & \Gamma_{bonds} = \begin{pmatrix} 6 \\ 0 \\ 2 \\ 0 \\ 2 \end{pmatrix} \end{matrix} \nonumber \]

    \[ \begin{matrix} A_1 = (C_{Td}^T)^{<1>} & A_2 = (C_{Td}^T)^{<2>} & E = (C_{Td}^T)^{<3>} & T_1 = (C_{Td}^T)^{<4>} \\ T_2 = (C_{Td}^T)^{<5>} & \Gamma_{tot} = \overrightarrow{( \Gamma_{uma} T_2)} & h = \sum Td & \Gamma_{tot}^T = \begin{pmatrix} 12 & 0 & 0 & 0 & 2 \end{pmatrix} & i = 1 .. 5 \end{matrix} \nonumber \]

    \[ \begin{matrix} \Gamma_{vib} = \Gamma_{tot} - T_1 - T_2 & \text{Vib}_i = \frac{ \sum \overrightarrow{ \left[ Td (C_{Td}^T )^{<i>} \Gamma_{vib} \right]}}{h} & \text{Vib} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{array} A A_1:~x^2 + y^2+z^2 \\ A_2 \\ E:~2z^2-x^2-y^2,~x^-y^2 \\ T_1:~(R_x,~R_y,~R_z) \\ T_2:~ (x,~y,~z),~(xy,~xz,~yz) \end{array} \\ \Gamma_{stretch} = \Gamma_{bonds} & \text{Stretch}_i = \frac{ \sum \overrightarrow{ \left[ Td (C_{Td}^T )^{<i>} \Gamma_{stretch} \right]}}{h} & \text{Stretch} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \begin{array} A A_1:~x^2 + y^2+z^2 \\ A_2 \\ E:~2z^2-x^2-y^2,~x^-y^2 \\ T_1:~(R_x,~R_y,~R_z) \\ T_2:~ (x,~y,~z),~(xy,~xz,~yz) \end{array} \\ \Gamma_{bend} = \Gamma_{vib} - \Gamma_{stretch} & \text{Bend}_i = \frac{ \sum \overrightarrow{ \left[ Td (C_{Td}^T )^{<i>} \Gamma_{bend} \right]}}{h} & \text{Bend} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{array} A A_1:~x^2 + y^2+z^2 \\ A_2 \\ E:~2z^2-x^2-y^2,~x^-y^2 \\ T_1:~(R_x,~R_y,~R_z) \\ T_2:~ (x,~y,~z),~(xy,~xz,~yz) \end{array} \end{matrix} \nonumber \]

    The group theoretical analysis assuming tetrahedral geometry is in excellent agreement with the spectroscopic data. Group theory predicts one IR active mode, and that it is coincident with a Raman frequency. This is observed with the T2 vibration. In addition theory predicts that there are two additional Raman active modes A1 and E.


    This page titled 6.9: P₄ is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?