6.5.1: Buckminsterfulerene
- Page ID
- 149278
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)C60 Has Icosahedral Symmetry
Buckminsterfulerene has four IR active vibrational modes (528, 577, 1180, 1430 cm-1) and ten Raman active modes (273, 436, 496, 710, 773, 110, 1250, 1435, 1470, 1570 cm-1). Demonstrate that the assumption of icosahedral symmetry for C60 is consistent with this data.
\[ \begin{matrix} \begin{array} E & & E & C_5 & & C_5^2 & C_3 & & C_2 & i & & S_{10} & S_{10}^3 & & S_6 & \sigma \end{array} & ~ \\ \text{CIh} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 3 & \frac{1 + \sqrt{5}}{2} & \frac{1- \sqrt{5}}{2} & 0 & -1 & 3 & \frac{1- \sqrt{5}}{2} & \frac{1+ \sqrt{5}}{2} & 0 & -1 \\ 3 & \frac{1 - \sqrt{5}}{2} & \frac{1+ \sqrt{5}}{2} & 0 & -1 & 3 & \frac{1+ \sqrt{5}}{2} & \frac{1- \sqrt{5}}{2} & 0 & -1 \\ 4 & -1 & -1 & 1 & 0 & 4 & -1 & -1 & 1 & 0 \\ 5 & 0 & 0 & -1 & 1 & 5 & 0 & 0 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 \\ 3 & \frac{1 + \sqrt{5}}{2} & \frac{1 - \sqrt{5}}{2} & 0 & -1 & -3 & - \frac{1 - \sqrt{5}}{2} & - \frac{1 + \sqrt{5}}{2} & 0 & 1 \\ 3 & \frac{1 - \sqrt{5}}{2} & \frac{1 + \sqrt{5}}{2} & 0 & -1 & -3 & - \frac{1 + \sqrt{5}}{2} & - \frac{1 - \sqrt{5}}{2} & 0 & 1 \\ 4 & -1 & -1 & 1 & 0 & -4 & 1 & 1 & -1 & 0 \\ 5 & 0 & 0 & -1 & 1 & -5 & 0 & 0 & 1 & -1 \end{bmatrix} & \begin{array} \text{Ag: }x^2 + y^2 + z^2 \\ \text{Eg: } 2z^2-x^2-y^2,x^2-y^2 \\ \text{T1g: Rx, Ry, Rz} \\ \text{T2g} \\ \text{Gg} \\ \text{Hg: }2z^2 -x^2-y^2,~x^2-y^2, ~xy,~yz,~xz \\ \text{Au} \\ \text{T1u: x, y, z} \\ \text{T2u} \\ \text{Gu} \\ \text{Hu} \end{array} \end{matrix} \nonumber \]
\[ \begin{matrix} \text{Ih:} \begin{pmatrix} 1 & 12 & 12 & 20 & 15 & 1 & 12 & 12 & 20 & 15 \end{pmatrix} & \text{Ih = Ih}^T & \Gamma_{uma} = \begin{pmatrix} 60 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix} & \Gamma_{uma} = \Gamma_{uma}^T \\ \Gamma_{bonds} = \begin{pmatrix} 90 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 8 \end{pmatrix} & \Gamma_{bonds} = \Gamma_{bonds}^T & \Gamma_{stretch} = \Gamma_{bonds} \end{matrix} \nonumber \]
\[ \begin{matrix} \text{Ag} = ( \text{CIh}^T )^{<1>} & \text{T}_{1g} = ( \text{CIh}^T )^{<2>} & \text{T}_{2g} = ( \text{CIh}^T )^{<3>} & \text{G}_{g} = ( \text{CIh}^T )^{<4>} & \text{H}_{g} = (\text{CIh}^T)^{<5>} \\ \text{A}_{u} = ( \text{CIh}^T )^{<6>} & \text{T}_{1u} = ( \text{CIh}^T )^{<7>} & \text{A}_{u} = ( \text{CIh}^T )^{<8>} & \text{G}_{u} = ( \text{CIh}^T )^{<9>} & \text{H}_{u} = (\text{CIh}^T)^{<10>} \end{matrix} \nonumber \]
\[ \begin{matrix} h = \sum \text{Ih} & h = 120 & \Gamma_{tot} = \overrightarrow{( \Gamma_{uma} T1u)} & \Gamma_{vib} = \Gamma_{tot} - T1g - T1u & \Gamma_{bend} = \Gamma_{vib} - \Gamma_{stretch} & i = 1 .. 10 \end{matrix} \nonumber \]
\[ \begin{matrix} \text{Vib}_i = \frac{\sum \overrightarrow{[\text{Ih} ( \text{CIh}^T)^{<i>} \Gamma_{vib}]}}{h} & \text{Vib} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 1 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix} \begin{array} \text{Ag: }x^2 + y^2 + z^2 \\ \text{Eg: } 2z^2-x^2-y^2,x^2-y^2 \\ \text{T1g: Rx, Ry, Rz} \\ \text{T2g} \\ \text{Gg} \\ \text{Hg: }2z^2 -x^2-y^2,~x^2-y^2, ~xy,~yz,~xz \\ \text{Au} \\ \text{T1u: x, y, z} \\ \text{T2u} \\ \text{Gu} \\ \text{Hu} \end{array} \end{matrix} \nonumber \]
The 4 T1u modes are IR active and the 2 Ag and 8 Hg modes are Raman active. Also there are no coincidences. Thus the assumption of icosahedral symmetry is consistent with the spectroscopic data.