Skip to main content
Chemistry LibreTexts

4.13: The Quantum Jump in Momentum Space

  • Page ID
    150725
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This tutorial is a companion to "The Quantum Jump" which deals with the quantum jump from the perspective of the coordinate-space wave function. This tutorial accomplishes the same thing in momentum space.

    The time-dependent momentum wave function for a particle in a one-dimensional box of width 1a0 is shown below.

    \[ \psi (n,~p,~t) = n \sqrt{ \pi} \left[ \frac{1-(-1)^n \text{exp} (-i p)}{n^2 - \pi^2 - p^2} \right] \text{exp}(-i E_i t) \nonumber \]

    The n = 1 to n = 2 Transition for the Particle in a Box is Allowed

    This transition is allowed because it yields a momentum distribution that is asymmetric in time as is shown in the figure below. Consequently it allows for coupling with the perturbing electromagnetic field.

    \[ \begin{matrix} \text{Momentum increment} & P = 100 & \text{Time Increment} & T = 100 & \text{Initial} & n_i = 1 & \text{Final state} & n_f = 2 \end{matrix} \nonumber \]

    Initial and final energy states for the transition under study:

    \[ \begin{matrix} E_i = \frac{n_i^2 \pi^2}{2} & E_f = \frac{n_f^2 \pi^2}{2} \end{matrix} \nonumber \]

    Plot the wavefunction:

    \[ \begin{matrix} j = 0 .. P & p_j = -10 + \frac{20j}{P} & k = 0 .. T & t_k = \frac{k}{T} \end{matrix} \nonumber \]

    In the presence of electromagnetic radiation the particle in the box goes into a linear superposition of the stationary states. The linear superposition for the n = 1 and n = 2 states is given below.

    \[ \Psi (p,~t) = n_i \sqrt{ \pi} \left[ \frac{1-(-1)^{n_i} \text{exp}(-ip)}{n_i^2 \pi^2 - p^2} \right] \text{exp} (-i E_i t) + n_f \sqrt{ \pi} \left[ \frac{1-(-1)^{n_f} \text{exp}(-ip)}{n_f^2 \pi^2 - p^2}\right] \text{exp} (-i E_f t) \nonumber \]

    Calculate and plot the momentum distribution: Ψ*Ψ:

    \[ \Psi \Psi_{(j,~k)} = \left( \left| \Psi (p_j,~t_k ) \right| \right)^2 \nonumber \]

    Screen Shot 2019-05-15 at 12.54.43 PM.png

    The n = 1 to n = 3 Transition for the Particle in a Box is Not Allowed

    This transition is allowed because it yields a momentum distribution that is symmetric in time as is shown in the figure below. Consequently it does not allow for coupling with the perturbing electromagnetic field.

    \[ \begin{matrix} \text{Momentum increment} & P = 100 & \text{Time Increment} & T = 100 & \text{Initial} & n_i = 1 & \text{Final state} & n_f = 3 \end{matrix} \nonumber \]

    Initial and final energy states for the transition under study:

    \[ \begin{matrix} E_i = \frac{n_i^2 \pi^2}{2} & E_f = \frac{n_f^2 \pi^2}{2} \end{matrix} \nonumber \]

    Plot the wavefunction:

    \[ \begin{matrix} j = 0 .. P & p_j = -10 + \frac{20j}{P} & k = 0 .. T & t_k = \frac{k}{T} \end{matrix} \nonumber \]

    In the presence of electromagnetic radiation the particle in the box goes into a linear superposition of the stationary states. The linear superposition for the n = 1 and n = 3 states is given below.

    \[ \Psi (p,~t) = n_i \sqrt{ \pi} \left[ \frac{1-(-1)^{n_i} \text{exp}(-ip)}{n_i^2 \pi^2 - p^2} \right] \text{exp} (-i E_i t) + n_f \sqrt{ \pi} \left[ \frac{1-(-1)^{n_f} \text{exp}(-ip)}{n_f^2 \pi^2 - p^2}\right] \text{exp} (-i E_f t) \nonumber \]

    Calculate and plot the momentum distribution: Ψ*Ψ:

    \[ \Psi \Psi_{(j,~k)} = \left( \left| \Psi (p_j,~t_k ) \right| \right)^2 \nonumber \]

    Screen Shot 2019-05-15 at 12.54.43 PM.png


    This page titled 4.13: The Quantum Jump in Momentum Space is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.