Skip to main content
Chemistry LibreTexts

14.2: Time-Dependent Perturbation Theory

  • Page ID
    60591
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The mathematical machinery needed to compute the rates of transitions among molecular states induced by such a time-dependent perturbation is contained in time dependent perturbation theory (TDPT). The development of this theory proceeds as follows. One first assumes that one has in-hand all of the eigenfunctions {\(\Phi_k\)} and eigenvalues {\(E_k^0\)} that characterize the Hamiltonian \(H^0\) of the molecule in the absence of the external perturbation:

    \[ H^0 \Phi_k = E_k^0 \Phi_k. \nonumber \]

    One then writes the time-dependent Schrödinger equation

    \[ i\hbar\dfrac{\partial \Psi}{\partial t} = (H^0 + H_{int}) \Psi \nonumber \]

    in which the full Hamiltonian is explicitly divided into a part that governs the system in the absence of the radiation field and \(H_{int}\) which describes the interaction with the field.

    Perturbative Solution

    By treating \(H^0\) as of zeroth order (in the field strength |\(\textbf{A}_0\)|), expanding \( \Psi \) order-by order in the field-strength parameter:

    \[ \Psi = \Psi^0 + \Psi^1 + \Psi^2 + \Psi^3 + ..., \nonumber \]

    realizing that Hint contains terms that are both first- and second- order in \(|\textbf{A}_0|\)

    \[ H^1_{int} = \sum\limits_j \left[ \left(\dfrac{ie\hbar}{m_ec}\right) \textbf{A}(r_j,t)\cdot{\nabla_j} \right] + \sum\limits_a \sum\limits_a \left[ \left(\dfrac{iZ_ae\hbar}{m_ac}\right) \textbf{A}(R_a,t)\cdot{\nabla_a} \right], \nonumber \]

    \[ H^2_{int} = \sum\limits_j \left[ \left(\dfrac{e^2}{2m_ec^2}\right) |\textbf{A}(r_j,t)|^2\right] + \sum\limits_a \left[ \left( \dfrac{Z_a^2e^2}{2m_ac^2}\right) |\textbf{A}(R_a,t)|^2 \right], \nonumber \]

    and then collecting together all terms of like power of \(|\textbf{A}_0|\), one obtains the set of time dependent perturbation theory equations. The lowest order such equations read:

    \[ i\hbar \dfrac{\partial \Psi^0}{\partial t} = H^0 \Psi^0 \nonumber \]

    \[ i\hbar\dfrac{\partial \Psi^1}{\partial t} = (H^0 \Psi^1 + H^1_{int} \Psi^0) \nonumber \]

    \[ i\hbar\dfrac{\partial \Psi^2}{\partial t} = (H^0 \Psi^2 + H^2_{int}\Psi^0 + H^1_{int}\Psi^1). \nonumber \]

    The zeroth order equations can easily be solved because \(H^0\) is independent of time. Assuming that at \(t = - \infty, \Psi = \psi_i\) (we use the index i to denote the initial state), this solution is:

    \[ \Psi^0 = \Phi_i e^{\dfrac{-iE_i^0t}{\hbar}}. \nonumber \]

    The first-order correction to \(\Psi^0, \Psi^1\) can be found by (i) expanding \(\Psi^1\) in the complete set of zeroth-order states {\(\Phi_f\)}:

    \[ \Psi^1 = \sum\limits_f\Phi_f<\Phi_f|\Psi^1> = \sum\limits_f\Phi_fC_f^1, \nonumber \]

    (ii) using the fact that

    \[ H^0\Phi_f = E_f^0 \Phi_f \nonumber \],

    and (iii) substituting all of this into the equation that Y1 obeys. The resultant equation for the coefficients that appear in the first-order equation can be written as

    \[ i\hbar \dfrac{\partial C_f^1}{\partial t} = \sum\limits_k [E_k^0 C_k^1 \delta_{f,k}] + <\Phi_f| H^1_{int}|\Phi_i> e^{\dfrac{-iE_i^0t}{\hbar}}, \nonumber \]

    or

    \[ i\hbar\dfrac{\partial C_f^1}{\partial t} = E_f^0C_f^1 + <\Phi_f|H^1_{int}|\Phi_i> e^{\dfrac{-iE_i^0t}{\hbar}}. \nonumber \]

    Defining

    \[ C_f^1(t) = D_f^1(t)e^{\dfrac{-iE_f^0t}{\hbar}}. \nonumber \]

    his equation can be cast in terms of an easy-to-solve equation for the \(D_f^1\) coefficients:

    \[ i\hbar\dfrac{\partial D_f^1}{\partial t} = <\Phi_f|H^1_{int}|\Phi_i> e^{\dfrac{i[E_f^0-E_i^0]t}{\hbar}}. \nonumber \]

    Assuming that the electromagnetic field \(\textbf{A}(\textbf{r},t)\) is turned on at t=0, and remains on until t = T, this equation for \(D_f^1\) can be integrated to yield:

    \[ D_f^1(t) = \dfrac{1}{(i\hbar)}\int\limits_0^T <\Phi_f|H^1_{int}|\Phi_i> e^{\dfrac{i[E_f^0-E_i^0]t'}{\hbar}}dt'. \nonumber \]


    This page titled 14.2: Time-Dependent Perturbation Theory is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jack Simons via source content that was edited to the style and standards of the LibreTexts platform.