Skip to main content
Chemistry LibreTexts

4.8: Problems

  • Page ID
    420501
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    1. For each molecule, calculate the reduced mass (in kg) and the force constant for the bond (in N/m).
    Molecule \(\omega_e \) (cm \({}^{-1}\) ) \(\mu\) (kg) k (N/m)
    \(^{1} H ^{79} Br\) 2648.975    
    \(^{35} Cl _{2}\) 559.72    
    \(^{12} C ^{16} O\) 2169.81358    
    \(^{69} Ga ^{35} Cl\) 365.3    
    1. The typical carbonyl stretching frequency is on the order of 1600-1900 \(cm ^{-1}\). Why is this value smaller than the value of \(\omega_e \) for \(CO\) given in the table above?
    1. The first few Hermite polynomials are given below.
    v \(H_ {v} (y)\)
    0 1
    1 \(2y\)
    2 \(4y ^{2} – 2\)

    \(H_ {v+1}(y) = 2yH_{v} (y) – 2vH_ {v-1} (y)\)

    1. Use the recursion relation to generate the functions \(H_ {3}\) (y) and \(H_ {4}\) (y).
    2. Demonstrate that the first three Hermite polynomials (\(H_ {0}\) (y), \(H_ {1}\) (y) and \(H_ {2}\) (y)) form an orthogonal set.
    1. The Morse Potential function is given by

    \[U\left(x\right)=D_e\left(1-e^{-\beta x}\right)\nonumber\]

    where \(x = (r – r _{e})\).

    1. Find an expression for the force constant of a Morse Oscillator bond by evaluating
    2. For \(^{1} H ^{35} Cl\), \(D _{e} = 7.31 \times 10 ^{-19} J\) and \(\beta = 1.8 \times 10 ^{10} m^{-1}\). Use your above expression to evaluate k for the bond in HCl.
    3. On what shortcoming of the Harmonic Oscillator model does the Morse Potential improve? What shortcoming does the Morse model share with that of a Harmonic Oscillator?
    1. The following data are observed in the vibrational overtone spectrum in \(^{1}H ^{35} Cl\) (Meyer & Levin, 1929).
    \(v’ \leftarrow v”\) \({\widetilde{\nu }}_{obs}\) (\(cm ^{-1}\) )
    \(1 \leftarrow 0\) 2885.9
    \(2 \leftarrow 0\) 5666.8
    \(3 \leftarrow 0\) 8347.0
    \(4 \leftarrow 0\) 10923.1
    \(5 \leftarrow 0\) 13396.5

    From these data, calculate a set of \(\Delta G _{v+\frac{1}{2}}\) values. Fit these results to the form

    \[\mathrm{\Delta }G_{v+\frac{1}{2}}={\omega }_e-2\ {\omega }_ex_e(v+1) \nonumber\]

    to determine values for \(\omega_e \) and \(\omega_ex _{e}\) for \(HCl\).

    1. The following wavenumber frequencies are reported for the band origins for the \(1 – v”\) bands in an electronic transition of a diatomic molecule. Using the Birge-Sponer method, determine the dissociation energy of the molecule in its ground electronic state.
    v" Wavenumber (\(cm ^{-1}\) ) \(\Delta G _{v+\frac{1}{2}}\) (\(cm ^{- 1}\) )
      19586.9  
      19522.3  
      19504.8  
      19465.9  
      19418.3  
      19375.1  
      19323.2  
      19275.7  
      19223.8  
      19167.6  
      19111.4  
      19050.9  
      18990.4  
      18925.6  
      18860.7  
      18795.9  
      18722.4  
      18653.3  
      18579.8  
      18506.3  
    27 18428.5  
      18342.1  
      18259.9  
      18177.8  
      18091.5  
      17996.3  
      17909.8  
      17814.8  
      17719.7  
      17624.6  

    This page titled 4.8: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

    • Was this article helpful?