# 32.5: Determinants

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The determinant is a useful value that can be computed from the elements of a square matrix

Consider row reducing the standard 2x2 matrix. Suppose that $$a$$ is nonzero.

$\begin{pmatrix} a &b \\ c &d \end{pmatrix} \nonumber$

$\frac{1}{a} R_1 \rightarrow R_1, \;\;\; R_2-cR_1 \rightarrow R_2 \nonumber$

$\begin{pmatrix} 1 &\frac{b}{a} \\ c &d \end{pmatrix} \nonumber$

$\begin{pmatrix} 1 & \frac{b}{a} \\ 0 & d-\frac{cb}{a}\end{pmatrix} \nonumber$

Now notice that we cannot make the lower right corner a 1 if

$d - \frac{cb}{a} = 0 \nonumber$

or

$ad - bc = 0. \nonumber$

##### Definition: The Determinant

We call $$ad - bc$$ the determinant of the 2 by 2 matrix

$\begin{pmatrix} a &b \\ c &d \end{pmatrix} \nonumber$

it tells us when it is possible to row reduce the matrix and find a solution to the linear system.

##### Example 32.5.1 :

The determinant of the matrix

$\begin{pmatrix} 3 & 1\\ 5 & 2 \end{pmatrix} \nonumber$

is

$3(2) - 1(5) = 6 - 5 = 1. \nonumber$

## Determinants of 3 x 3 Matrices

We define the determinant of a triangular matrix

$\begin{pmatrix} a &d &e \\ 0 &b &f \\ 0 &0 &c \end{pmatrix} \nonumber$

by

$\text{det} = abc. \nonumber$

Notice that if we multiply a row by a constant $$k$$ then the new determinant is $$k$$ times the old one. We list the effect of all three row operations below.

##### Theorem

The effect of the the three basic row operations on the determinant are as follows

1. Multiplication of a row by a constant multiplies the determinant by that constant.
2. Switching two rows changes the sign of the determinant.
3. Replacing one row by that row + a multiply of another row has no effect on the determinant.

To find the determinant of a matrix we use the operations to make the matrix triangular and then work backwards.

##### Example 32.5.2 :

Find the determinant of

$\begin{pmatrix} 2 & 6 &10 \\ 2 &4 &-3 \\ 0 &4 &2 \end{pmatrix} \nonumber$

We use row operations until the matrix is triangular.

$\dfrac{1}{2}R_1 \rightarrow R_1 \text{(Multiplies the determinant by } \dfrac{1}{2}) \nonumber$

$\begin{pmatrix} 1 & 3 &5 \\ 2 &4 &-3 \\ 0 &4 &2 \end{pmatrix} \nonumber$

$R_2 - 2R_1 \rightarrow R_2 \text{ (No effect on the determinant)} \nonumber$

$\begin{pmatrix} 1 & 3 &5 \\ 0 &-2 &-13 \\ 0 &4 &2 \end{pmatrix} \nonumber$

Note that we do not need to zero out the upper middle number. We only need to zero out the bottom left numbers.

$R_3 + 2R_2 \rightarrow R_3 \text{ (No effect on the determinant)}. \nonumber$

$\begin{pmatrix} 1 & 3 &5 \\ 0 &-2 &-13 \\ 0 &0 &-24 \end{pmatrix} \nonumber$

Note that we do not need to make the middle number a 1.

The determinant of this matrix is 48. Since this matrix has $$\frac{1}{2}$$ the determinant of the original matrix, the determinant of the original matrix has

$\text{determinant} = 48(2) = 96. \nonumber$

## Inverses

We call the square matrix I with all 1's down the diagonal and zeros everywhere else the identity matrix. It has the unique property that if $$A$$ is a square matrix with the same dimensions then

$AI = IA = A. \nonumber$

Definition

If $$A$$ is a square matrix then the inverse $$A^{-1}$$ of $$A$$ is the unique matrix such that

$AA^{-1}=A^{-1}A=I. \nonumber$

##### Example 32.5.3 :

Let

$A=\begin{pmatrix} 2 &5 \\ 1 &3 \end{pmatrix} \nonumber$

then

$A^{-1}= \begin{pmatrix} 3 &-5 \\ -1 &2 \end{pmatrix} \nonumber$

Verify this!

Theorem: ExistEnce

The inverse of a matrix exists if and only if the determinant is nonzero.

To find the inverse of a matrix, we write a new extended matrix with the identity on the right. Then we completely row reduce, the resulting matrix on the right will be the inverse matrix.

##### Example 32.5.4 :

$\begin{pmatrix} 2 &-1 \\ 1 &-1 \end{pmatrix} \nonumber$

First note that the determinant of this matrix is

$-2 + 1 = -1 \nonumber$

hence the inverse exists. Now we set the augmented matrix as

$\begin{pmatrix}\begin{array}{cc|cc}2&-1&1&0 \\1&-1&0&1\end{array}\end{pmatrix} \nonumber$

$R_1 {\leftrightarrow} R_2 \nonumber$

$\begin{pmatrix}\begin{array}{cc|cc}1&-1&0&1 \\2&-1&1&0\end{array}\end{pmatrix} \nonumber$

$R_2 - 2R_1 {\rightarrow} R_2 \nonumber$

$\begin{pmatrix}\begin{array}{cc|cc}1&-1&0&1 \\0&1&1&-2\end{array}\end{pmatrix} \nonumber$

$R_1 + R_2 {\rightarrow} R_1 \nonumber$

$\begin{pmatrix}\begin{array}{cc|cc}1&0&1&-1 \\0&1&1&-2\end{array}\end{pmatrix} \nonumber$

Notice that the left hand part is now the identity. The right hand side is the inverse. Hence

$A^{-1}= \begin{pmatrix} 1&-1 \\ 1&-2 \end{pmatrix} \nonumber$

## Solving Equations Using Matrices

##### Example 32.5.5 :

Suppose we have the system

$2x - y = 3 \nonumber$

$x - y = 4 \nonumber$

Then we can write this in matrix form

$Ax = b \nonumber$

where

$A=\begin{pmatrix} 2&-1 \\ 1&-1 \end{pmatrix}, \;\;\; x= \begin{pmatrix} x \\ y \end{pmatrix}, \;\;\; \text{and} \; b=\begin{pmatrix} 3\\4 \end{pmatrix} \nonumber$

We can multiply both sides by $$A^{-1}$$:

$A^{-1}A x = A^{-1}b \nonumber$

or

$x = A^{-1}b \nonumber$

From before,

$A^{-1}=\begin{pmatrix} 1&-1 \\ 1&-2 \end{pmatrix} \nonumber$

Hence our solution is

$\begin{pmatrix} -1&-5 \end{pmatrix} \nonumber$

or

$x = -1 \text{ and } y = 5 \nonumber$