# 22.4: The Enthalpy of an Ideal Gas is Independent of Pressure

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

How does pressure affect enthalpy $$H$$? As we showed above we have the following relations of first and second order for $$G$$

$\left( \dfrac{\partial G}{\partial T} \right)_P = -S \nonumber$

$\left( \dfrac{\partial G}{\partial P} \right)_T = -V \nonumber$

$-\left (\dfrac{\partial S}{\partial P }\right)_T = \left (\dfrac{\partial V}{\partial T} \right)_P \nonumber$

We also know that by definition:

$G = H - TS \label{def}$

Consider an isothermal change in pressure, so taking the partial derivative of each side of Equation $$\ref{def}$$, we get:

$\left( \dfrac{\partial G}{\partial P}\right)_T = \left( \dfrac{\partial H}{ \partial P}\right)_T -T \left( \dfrac{\partial S}{\partial P}\right)_T \nonumber$

$\left( \dfrac{\partial H}{\partial P}\right)_T = V -T \left( \dfrac{\partial V}{\partial T}\right)_P \label{Eq12}$

For an ideal gas

$\dfrac{\partial V}{\partial T} = \dfrac{nR}{P} \nonumber$

so Equation $$\ref{Eq12}$$ becomes

$\left( \dfrac{\partial H}{\partial P}\right)_T = V - T \left( \dfrac{nR}{P}\right) = 0 \nonumber$

As we can see for an ideal gas, there is no dependence of $$H$$ on $$P$$.

22.4: The Enthalpy of an Ideal Gas is Independent of Pressure is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.