Skip to main content
Chemistry LibreTexts

12.11: Reducible Representations are Comprised of Irreducible Representations

  • Page ID
    433848
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    As we saw in the previous section, the complete motion (translations, rotations, and vibrations) of ammonia (NH3) can be represented by the following reducible representation:

    \(C_{3v}\) \(E\) \(2C_3\) \(3\sigma_v\)
    \(\Gamma\) \(12\) \(0\) \(2\)

    We want to relate the reducible form representation to the irreducible representation. To do this, we use the tabular method. First, create a new table:

    \(C_{3v}\) \(E\) \(2C_3\) \(3\sigma_v\)
    \(\Gamma\) \(12\) \(0\) \(2\)
    \(A_1\)      
    \(A_2\)      
    \(E\)      

    We will need the \(C_{3v}\) character table for ammonia:

    \(C_{3v}\) \(C_{3}\) \(C_{s}\)
    \(A_1\) \(A\) \(A'\)
    \(A_2\) \(A\) \(A"\)
    \(E\) \(E\) \(A'+A"\)

    Fill in each number in our table by using the following equation:

    \[g_c \chi_i X_r\]

    \(g_e\) Number of operations (order) in the class
    \(\chi_i\) Character of the irreducible representation from the character table
    \(\chi_r\) Character of the reducible representation from \(\Gamma\)

    For example, the top-left value would be:

    \[1\times 1\times 12=12\]

    Where:

    • \(1\) is the number of operations in the \(E\) class
    • \(1\) is the character of the irreducible representation
    • 9 is the character of the reducible representation

    The table becomes:

    \(C_{3v}\) \(E\) \(2C_3\) \(3\sigma_v\)
    \(\Gamma\) \(12\) \(0\) \(2\)
    \(A_1\) \(12\) \(0\) \(6\)
    \(A_2\) \(12\) \(0\) \(-6\)
    \(E\) \(24\) \(0\) \(0\)

    Sum up each row:

    \(C_{3v}\) \(E\) \(2C_3\) \(3\sigma_v\) \(\sum\)
    \(\Gamma\) \(12\) \(0\) \(2\)  
    \(A_1\) \(12\) \(0\) \(6\) \(18\)
    \(A_2\) \(12\) \(0\) \(-6\) \(6\)
    \(E\) \(24\) \(0\) \(0\) \(24\)

    Now divide the summed values by the order of the group to obtain the number of times the irreducible representation appears (\(n_i\)). Ammonia has order \(h=6\):

    \(C_{3v}\) \(E\) \(2C_3\) \(3\sigma_v\) \(\sum\) \(n_i=\frac{\sum}{h}\)
    \(\Gamma\) \(12\) \(0\) \(2\)    
    \(A_1\) \(12\) \(0\) \(6\) \(18\) \(3\)
    \(A_2\) \(12\) \(0\) \(-6\) \(6\) \(1\)
    \(E\) \(24\) \(0\) \(0\) \(24\) \(4\)

    The reducible representation can be broken down to its irreducible forms:

    \[\Gamma=3 A_1+A_2+4 E\]

    Now that we have the irreducible representations for the motion of ammonia, we can determine which are associated with rotations, vibrations, and translations. To start, we turn to the \(C_{3v}\) character table:

    \(C_{3v}\) E 2C3 v    
    A1 1 1 1 z x2+y2, z2
    A2 1 1 -1 Rz  
    E 2 -1 0 (Rx, Ry), (x,y) (xz, yz) (x2-y2, xy)

    The first column to the right of the characters includes to the terms \(x\), \(y\), \(z\), \(R_x\), \(R_y\), and \(R_z\). The rows with \(x\), \(y\), and \(z\) represent the irreducible representations for the translational modes in those directions:

    \[ \Gamma_\text{trans} = A_1 + E \]

    The rows with \(R_x\), \(R_y\), and \(R_z\) represent the irreducible representations for the rotational modes about those axes:

    \[ \Gamma_\text{rot} = A_2 + E \]

    We can subtract the translational and rotational irreducible representations from our \Gamma to get the irreducible representations for the normal vibrational modes:

    \[ \Gamma_\text{vib} = \Gamma - \Gamma_\text{trans} -\Gamma_\text{rot} \]

    Doing this, we obtains:

    \[ \Gamma_\text{vib} = 2 A_1 + 2 E \]


    12.11: Reducible Representations are Comprised of Irreducible Representations is shared under a not declared license and was authored, remixed, and/or curated by Jerry LaRue.