# 2.E: The Classical Wave Equation (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Solutions to select questions can be found online.

## 2.1A

Find the general solutions to the following differential equations:

1. $$\dfrac{d^{2}y}{dx^{2}} - 4y = 0$$
2. $$\dfrac{d^{2}y}{dx^{2}} - 3\dfrac{dy}{dx} - 54y = 0$$
3. $$\dfrac{d^{2}y}{dx^{2}} + 9y = 0$$

## 2.1B

Find the general solutions to the following differential equations:

1. $$\dfrac{d^{2}y}{dx^{2}} - 16y = 0$$
2. $$\dfrac{d^{2}y}{dx^{2}} - 6\dfrac{dy}{dx} + 27y = 0$$
3. $$\dfrac{d^{2}y}{dx^{2}} + 100y = 0$$

## 2.1C

Find the general solutions to the following differential equations:

1. $$\dfrac{dy}{dx} - 4\sin(x)y = 0$$
2. $$\dfrac{d^{2}y}{dx^{2}} - 5\dfrac{dy}{dx}+6y = 0$$
3. $$\dfrac{d^{2}y}{dx^{2}} = 0$$

## 2.2A

Practice solving these first and second order homogeneous differential equations with given boundary conditions:

1. $$\dfrac{dy}{dx} = ay$$ with $$y(0) = 11$$
2. $$\dfrac{d^2y}{dt^2} = ay$$ with $$y(0) = 6$$ and $$y'(0) = 4$$
3. $$\dfrac{d^2y}{dt^2} + \dfrac{dy}{dt} - 42y = 0$$ with $$y(0) = 2$$ and $$y'(0) = 0$$

## 2.3A

Prove that $$x(t)$$ = $$\cos(\theta$$) oscillates with a frequency

$\nu = \dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}} \nonumber$

Prove that $$x(t)$$ = $$\cos(\theta$$) also has a period

$T = {2\pi}\sqrt{\dfrac{m}{k}} \nonumber$

where $$k$$ is the force constant and $$m$$ is mass of the body.

## 2.3B

Try to show that

$x(t)=\sin(\omega t)\nonumber$

oscillates with a frequency

$\nu = \omega/2\pi\nonumber$

Explain your reasoning. Can you give another function of x(t) that have the same frequency.

## 2.3C

Which two functions oscillate with the same frequency?

1. $$x(t)=\cos( \omega t)$$
2. $$x(t)=\sin (2 \omega t)$$
3. $$x(t)=A\cos( \omega t)+B\sin( \omega t)$$

## 2.3D

Prove that $$x(t) = \cos(\omega(t))$$ oscillates with a frequency

$\nu = \dfrac{\omega}{2\pi} \nonumber.$

Prove that $$x(t) = A \cos(\omega(t) + B \sin(\omega(t))$$ oscillates with the same frequency:

$\nu = \dfrac{\omega}{2\pi}. \nonumber$

## 2.4

Show that the differential equation:

$\dfrac{d^2y}{dx^2} + y(x) = 0\nonumber$

has a solution

$y(x)= 2\sin x + \cos x \nonumber$

## 2.7

For a classical harmonic oscillator, the displacement is given by

$\xi (t)=v_0 \sqrt{\dfrac{m}{k}} \sin \sqrt{\dfrac{k}{m}} t\ \nonumber$

where $$\xi=x-x_0$$. Derive an expression for the velocity as a function of time, and determine the times at which the velocity of the oscillator is zero.

## 2.11

Verify that

$Y(x,t) = A \sin \left(\dfrac{2\pi }{\lambda}(x-vt) \right)\nonumber$

has a frequency $$\nu$$ = $$v$$/$$\lambda$$ and wavelength $$\lambda$$ traveling right with a velocity $$v$$.

## 2.13A

Explain (in words) how to expand the Hamiltonian into two dimensions and use it solve for the energy

## 2.13B

Given that the Schrödinger equation for a two-dimensional box, with sides $$a$$ and $$b$$, is

$\dfrac{∂^2 Ψ}{∂x^2} + \dfrac{∂^2 Ψ}{∂y^2} +\dfrac{(8π^2mE) }{h^2}Ψ(x,y) = 0 \nonumber$

and it has the boundary conditions of

$$Ψ(0,y)= Ψ (a,y)=0$$ and $$Ψ(o,x)= Ψ(x,b)=0$$

for all $$x$$ and $$y$$ values, show that

$E_{2,2}=\left(\dfrac{h^2}{2ma^2}\right)+\left(\dfrac{h^2}{2mb^2}\right). \nonumber$

## 2.14

Explain, in words, how to expand the Schrödinger Equations into a three-dimensional box

## 2.18

Solving for the differential equation for a pendulum gives us the following equation,

$\phi(x)= c_1\cos {\sqrt{\dfrac{g}{L}}} +c_2\sin {\sqrt{\dfrac{g}{L}}} \nonumber$

Assuming $$c_1=2$$, $$c_3= 5$$, $$g=7$$ and $$L=3$$, what is the position of the pendulum initially? Does this make sense in the real world. Why or why not? (We can ignore units for this problem).

## 2.23

Consider a Particle of mass $$m$$ in a one-dimensional box of length $$a$$. Its average energy is given by

$\langle{E}\rangle = \dfrac{1}{2m}\langle p^2\rangle\nonumber$

Because

$\langle{p}\rangle\ = 0\nonumber$

$\langle p^2\rangle = \sigma^{2}_{p}\nonumber$

where $$\sigma_p$$ can be called the uncertainty in $$p$$. Using the Uncertainty Principle, show that the energy must be at least as large as $$\hbar/8ma^2$$ because $$\sigma_x$$, the uncertainty in $$x$$, cannot be larger than $$a$$.

## 2.33

Prove $$y(x, t) = A\cos[2π/λ(x - vt)]$$ is a wave traveling to the right with velocity $$v$$, wavelength $$λ$$, and period $$λ/v$$.

2.E: The Classical Wave Equation (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.