Skip to main content
Chemistry LibreTexts

12.7: The Lindemann Mechanism

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Lindemann mechanism (Lindemann, Arrhenius, Langmuir, Dhar, Perrin, & Lewis, 1922) is a useful one to demonstrate some of the techniques we use for relating chemical mechanisms to rate laws. In this mechanism, a reactant is collisionally activated to a highly energetic form that can then go on to react to form products.

    \[ A + A \xrightleftharpoons [k_1]{k_{-1}} A^* \nonumber \]

    \[ A^* \xrightarrow{k_2} P \nonumber \]

    If the steady state approximation is applied to the intermediate \(A^*\)

    \[ \dfrac{d[A^*]}{dt} = k_1[A]^2 - k_{-1}[A^*][A] - k_2[A^*] \approx 0 \nonumber \]

    an expression can be derived for \([A^*]\).

    \[A^*]= \dfrac{ k_1[A]^2 }{k_{-1}[A] + k_2} \nonumber \]

    Substituting this into an expression for the rate of the production of the product \(P\)

    \[\dfrac{d[P]}{dt} = k_2[A^*] \nonumber \]


    \[\dfrac{d[P]}{dt} = \dfrac{ k_2 k_1[A]^2 }{k_{-1}[A] + k_2} \nonumber \]

    In the limit that \(k_{-1}[A] \ll k_2\), the rate law becomes first order in \([A]\) since \(k_{-1}[A] + k_2 \approx k_{-1}[A]\).

    \[\dfrac{d[P]}{dt} = \dfrac{ k_2 k_1 }{k_{-1}} [A] \nonumber \]

    This will happen if the second step is very slow (and is the rate determining step), such that the reverse of the first step “wins” in the competition for [A*]. However, in the other limit, that \(k_2 \gg k_{-1}[A]\), the reaction becomes second order in \([A]\) since \(k_{-1}[A] + k_2 \approx k_2\).

    \[\dfrac{d[P]}{dt} = k_1[A]^2 \nonumber \]

    which is consistent with the forward reaction of the first step being the rate determining step, since \(A^*\) is removed from the reaction (through the formation of products) very quickly as soon as it is formed.

    Third-body Collisions

    Sometimes, the third-body collision is provided by an inert species \(M\), perhaps by filling the reaction chamber with a heavy non-reactive species, such as Ar. In this case, the mechanism becomes

    \[ A + M \xrightleftharpoons [k_1]{k_{-1}} A^* + M \nonumber \]

    \[ A^* \xrightarrow{k_2} P \nonumber \]

    And in the limit that \([A^*]\) can be treated using the steady state approximation, the rate of production of the product becomes

    \[\dfrac{d[P]}{dt} = \dfrac{ k_2 k_1[M] }{k_{-1}[M] + k_2} \nonumber \]

    And if the concentration of the third body collider is constant, it is convenient to define an effective rate constant, \(k_{uni}\).

    \[k_{uni} = \dfrac{ k_2 k_1[M] }{k_{-1}[M] + k_2 } \nonumber \]

    The utility is that important information about the individual step rate constants can be extracted by plotting \(1/k_{uni}\) as a function of \(1/[M]\).

    \[ \dfrac{1}{k_{uni}} = \dfrac{k_{-1}}{ k_2 k_1 } + k_2 \left( \dfrac{1}{[M]} \right) \nonumber \]

    The plot should yield a straight line, the slope of which gives the value of \(k_2\), and the intercept gives \((k_{-1}/k_2k_1)\).

    This page titled 12.7: The Lindemann Mechanism is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.