Skip to main content
Chemistry LibreTexts

13.5: Problems

  • Page ID
    106886
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Problem \(\PageIndex{1}\)

    Finish the problem of Example \(13.1.1\) and obtain \(y\) and \(z\).

    Problem \(\PageIndex{2}\)

    Use determinants to solve the equations:

    A)

    \[\begin{array}{c} x+y+z=6\\ x+2y+3z=14\\ x+4y+9z=36 \end{array} \nonumber\]

    B)

    \[ \begin{array}{c} x+iy-z=0\\ ix+y+z=0\\ x+2y-iz=1 \end{array} \nonumber\]

    Problem \(\PageIndex{3}\)

    Show that a \(3\times 3\) determinant that contains zeros above the principal diagonal is the product of the diagonal elements.

    \[D=\begin{vmatrix} a &0&0 \\ b&c &0 \\ d& e &f \end{vmatrix}=acf \nonumber\]

    Problem \(\PageIndex{4}\)

    Prove that

    \[D=\begin{vmatrix} 1 &2&3 \\ 2&3 &3 \\ 3& 4 &3 \end{vmatrix}=0 \nonumber\]

    using the properties of determinants (that is, without calculating the determinant!). Clearly state the properties you use in each step.

    Exercise \(\PageIndex{5}\)

    In previous lectures, we discussed how to perform double and triple integrals in different coordinate systems. For instance, we learned that the area elements and volume elements are:

    2D:

    Cartesian: \(dA= dx.dy\)
    Polar: \(dA=r. dr. d\theta\)

    3D:

    Cartesian: \(dV= dx.dy.dz\)
    Spherical: \(dV=r^2.\sin\theta dr. d\theta d\phi\)

    In general, for any coordinate system, we can express the area (or volume) element in a new coordinate system using the Jacobian (\(J\)). For example, in polar coordinates in two dimensions:

    \[dA=dx.dy=J. dr.d\theta \nonumber\]

    where the Jacobian is defined as:

    \[J=\left | \begin{matrix} \frac{\partial x}{\partial r} &\frac{\partial x}{\partial \theta} \\ \\ \frac{\partial y}{\partial r} &\frac{\partial y}{\partial \theta} \end{matrix} \right | \nonumber\]

    a) Calculate the Jacobian in two-dimensional polar coordinates and show that \(dA=r. dr. d\theta\).

    In spherical coordinates,

    \[dV=dx.dy.dz=J. dr.d\theta. d\phi \nonumber\]

    where

    \[J=\left | \begin{matrix} \frac{\partial x}{\partial r} &\frac{\partial x}{\partial \theta}&\frac{\partial x}{\partial \phi} \\ \\ \frac{\partial y}{\partial r} &\frac{\partial y}{\partial \theta}&\frac{\partial y}{\partial \phi}\\ \\ \frac{\partial z}{\partial r} &\frac{\partial z}{\partial \theta}&\frac{\partial z}{\partial \phi}\\ \end{matrix} \right | \nonumber\]

    b) Calculate the Jacobian in three-dimensional spherical coordinates and show that

    \[dV=r^2.\sin\theta dr. d\theta d\phi \nonumber\]


    This page titled 13.5: Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?