# 15.5: Appendix E- Calculus Review

• • Howard DeVoe
• University of Maryland
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\tx}{\text{#1}} % text in math mode$$
$$\newcommand{\subs}{_{\text{#1}}} % subscript text$$
$$\newcommand{\sups}{^{\text{#1}}} % superscript text$$
$$\newcommand{\st}{^\circ} % standard state symbol$$
$$\newcommand{\id}{^{\text{id}}} % ideal$$
$$\newcommand{\rf}{^{\text{ref}}} % reference state$$
$$\newcommand{\units}{\mbox{\thinspace#1}}$$
$$\newcommand{\K}{\units{K}} % kelvins$$
$$\newcommand{\degC}{^\circ\text{C}} % degrees Celsius$$
$$\newcommand{\br}{\units{bar}} % bar (\bar is already defined)$$
$$\newcommand{\Pa}{\units{Pa}}$$
$$\newcommand{\mol}{\units{mol}} % mole$$
$$\newcommand{\V}{\units{V}} % volts$$
$$\newcommand{\timesten}{\mbox{\,\times\,10^{#1}}}$$
$$\newcommand{\per}{^{-1}} % minus one power$$
$$\newcommand{\m}{_{\text{m}}} % subscript m for molar quantity$$
$$\newcommand{\CVm}{C_{V,\text{m}}} % molar heat capacity at const.V$$
$$\newcommand{\Cpm}{C_{p,\text{m}}} % molar heat capacity at const.p$$
$$\newcommand{\kT}{\kappa_T} % isothermal compressibility$$
$$\newcommand{\A}{_{\text{A}}} % subscript A for solvent or state A$$
$$\newcommand{\B}{_{\text{B}}} % subscript B for solute or state B$$
$$\newcommand{\bd}{_{\text{b}}} % subscript b for boundary or boiling point$$
$$\newcommand{\C}{_{\text{C}}} % subscript C$$
$$\newcommand{\f}{_{\text{f}}} % subscript f for freezing point$$
$$\newcommand{\mA}{_{\text{m},\text{A}}} % subscript m,A (m=molar)$$
$$\newcommand{\mB}{_{\text{m},\text{B}}} % subscript m,B (m=molar)$$
$$\newcommand{\mi}{_{\text{m},i}} % subscript m,i (m=molar)$$
$$\newcommand{\fA}{_{\text{f},\text{A}}} % subscript f,A (for fr. pt.)$$
$$\newcommand{\fB}{_{\text{f},\text{B}}} % subscript f,B (for fr. pt.)$$
$$\newcommand{\xbB}{_{x,\text{B}}} % x basis, B$$
$$\newcommand{\xbC}{_{x,\text{C}}} % x basis, C$$
$$\newcommand{\cbB}{_{c,\text{B}}} % c basis, B$$
$$\newcommand{\mbB}{_{m,\text{B}}} % m basis, B$$
$$\newcommand{\kHi}{k_{\text{H},i}} % Henry's law constant, x basis, i$$
$$\newcommand{\kHB}{k_{\text{H,B}}} % Henry's law constant, x basis, B$$
$$\newcommand{\arrow}{\,\rightarrow\,} % right arrow with extra spaces$$
$$\newcommand{\arrows}{\,\rightleftharpoons\,} % double arrows with extra spaces$$
$$\newcommand{\ra}{\rightarrow} % right arrow (can be used in text mode)$$
$$\newcommand{\eq}{\subs{eq}} % equilibrium state$$
$$\newcommand{\onehalf}{\textstyle\frac{1}{2}\D} % small 1/2 for display equation$$
$$\newcommand{\sys}{\subs{sys}} % system property$$
$$\newcommand{\sur}{\sups{sur}} % surroundings$$
$$\renewcommand{\in}{\sups{int}} % internal$$
$$\newcommand{\lab}{\subs{lab}} % lab frame$$
$$\newcommand{\cm}{\subs{cm}} % center of mass$$
$$\newcommand{\rev}{\subs{rev}} % reversible$$
$$\newcommand{\irr}{\subs{irr}} % irreversible$$
$$\newcommand{\fric}{\subs{fric}} % friction$$
$$\newcommand{\diss}{\subs{diss}} % dissipation$$
$$\newcommand{\el}{\subs{el}} % electrical$$
$$\newcommand{\cell}{\subs{cell}} % cell$$
$$\newcommand{\As}{A\subs{s}} % surface area$$
$$\newcommand{\E}{^\mathsf{E}} % excess quantity (superscript)$$
$$\newcommand{\allni}{\{n_i \}} % set of all n_i$$
$$\newcommand{\sol}{\hspace{-.1em}\tx{(sol)}}$$
$$\newcommand{\solmB}{\tx{(sol,\,m\B)}}$$
$$\newcommand{\dil}{\tx{(dil)}}$$
$$\newcommand{\sln}{\tx{(sln)}}$$
$$\newcommand{\mix}{\tx{(mix)}}$$
$$\newcommand{\rxn}{\tx{(rxn)}}$$
$$\newcommand{\expt}{\tx{(expt)}}$$
$$\newcommand{\solid}{\tx{(s)}}$$
$$\newcommand{\liquid}{\tx{(l)}}$$
$$\newcommand{\gas}{\tx{(g)}}$$
$$\newcommand{\pha}{\alpha} % phase alpha$$
$$\newcommand{\phb}{\beta} % phase beta$$
$$\newcommand{\phg}{\gamma} % phase gamma$$
$$\newcommand{\aph}{^{\alpha}} % alpha phase superscript$$
$$\newcommand{\bph}{^{\beta}} % beta phase superscript$$
$$\newcommand{\gph}{^{\gamma}} % gamma phase superscript$$
$$\newcommand{\aphp}{^{\alpha'}} % alpha prime phase superscript$$
$$\newcommand{\bphp}{^{\beta'}} % beta prime phase superscript$$
$$\newcommand{\gphp}{^{\gamma'}} % gamma prime phase superscript$$
$$\newcommand{\apht}{\small\aph} % alpha phase tiny superscript$$
$$\newcommand{\bpht}{\small\bph} % beta phase tiny superscript$$
$$\newcommand{\gpht}{\small\gph} % gamma phase tiny superscript$$

$$\newcommand{\upOmega}{\Omega}$$

$$\newcommand{\dif}{\mathop{}\!\mathrm{d}} % roman d in math mode, preceded by space$$
$$\newcommand{\Dif}{\mathop{}\!\mathrm{D}} % roman D in math mode, preceded by space$$
$$\newcommand{\df}{\dif\hspace{0.05em} f} % df$$

$$\newcommand{\dBar}{\mathop{}\!\mathrm{d}\hspace-.3em\raise1.05ex{\Rule{.8ex}{.125ex}{0ex}}} % inexact differential$$
$$\newcommand{\dq}{\dBar q} % heat differential$$
$$\newcommand{\dw}{\dBar w} % work differential$$
$$\newcommand{\dQ}{\dBar Q} % infinitesimal charge$$
$$\newcommand{\dx}{\dif\hspace{0.05em} x} % dx$$
$$\newcommand{\dt}{\dif\hspace{0.05em} t} % dt$$
$$\newcommand{\difp}{\dif\hspace{0.05em} p} % dp$$
$$\newcommand{\Del}{\Delta}$$
$$\newcommand{\Delsub}{\Delta_{\text{#1}}}$$
$$\newcommand{\pd}{(\partial #1 / \partial #2 )_{#3}} % \pd{}{}{} - partial derivative, one line$$
$$\newcommand{\Pd}{\left( \dfrac {\partial #1} {\partial #2}\right)_{#3}} % Pd{}{}{} - Partial derivative, built-up$$
$$\newcommand{\bpd}{[ \partial #1 / \partial #2 ]_{#3}}$$
$$\newcommand{\bPd}{\left[ \dfrac {\partial #1} {\partial #2}\right]_{#3}}$$
$$\newcommand{\dotprod}{\small\bullet}$$
$$\newcommand{\fug}{f} % fugacity$$
$$\newcommand{\g}{\gamma} % solute activity coefficient, or gamma in general$$
$$\newcommand{\G}{\varGamma} % activity coefficient of a reference state (pressure factor)$$
$$\newcommand{\ecp}{\widetilde{\mu}} % electrochemical or total potential$$
$$\newcommand{\Eeq}{E\subs{cell, eq}} % equilibrium cell potential$$
$$\newcommand{\Ej}{E\subs{j}} % liquid junction potential$$
$$\newcommand{\mue}{\mu\subs{e}} % electron chemical potential$$
$$\newcommand{\defn}{\,\stackrel{\mathrm{def}}{=}\,} % "equal by definition" symbol$$

$$\newcommand{\D}{\displaystyle} % for a line in built-up$$
$$\newcommand{\s}{\smash[b]} % use in equations with conditions of validity$$
$$\newcommand{\cond}{\-2.5pt]{}\tag*{#1}}$$ $$\newcommand{\nextcond}{\\[-5pt]{}\tag*{#1}}$$ $$\newcommand{\R}{8.3145\units{J\,K\per\,mol\per}} % gas constant value$$ $$\newcommand{\Rsix}{8.31447\units{J\,K\per\,mol\per}} % gas constant value - 6 sig figs$$ $$\newcommand{\jn}{\hspace3pt\lower.3ex{\Rule{.6pt}{2ex}{0ex}}\hspace3pt}$$ $$\newcommand{\ljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}} \hspace3pt}$$ $$\newcommand{\lljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace1.4pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace3pt}$$ ## E.1 Derivatives Let $$f$$ be a function of the variable $$x$$, and let $$\Del f$$ be the change in $$f$$ when $$x$$ changes by $$\Del x$$. Then the derivative $$\df/\dx$$ is the ratio $$\Del f/\Del x$$ in the limit as $$\Del x$$ approaches zero. The derivative $$\df/\dx$$ can also be described as the rate at which $$f$$ changes with $$x$$, and as the slope of a curve of $$f$$ plotted as a function of $$x$$. The following is a short list of formulas likely to be needed. In these formulas, $$u$$ and $$v$$ are arbitrary functions of $$x$$, and $$a$$ is a constant. \begin{align*} & \frac{\dif(u^a)}{\dx} = au^{a-1}\frac{\dif u}{\dx} \cr & \frac{\dif (uv)}{\dx} = u\frac{\dif v}{\dx}+v\frac{\dif u}{\dx} \cr & \frac{\dif(u/v)}{\dx} = \left( \frac{1}{v^2} \right) \left( v\frac{\dif u}{\dx}-u\frac{\dif v}{\dx} \right) \cr & \frac{\dif\ln(ax)}{\dx} = \frac{1}{x} \cr & \frac{\dif(e^{ax})}{\dx} = ae^{ax} \cr & \frac{\df(u)}{\dx} = \frac{\df(u)}{\dif u}\cdot\frac{\dif u}{\dx} \end{align*} ## E.2 Partial Derivatives If $$f$$ is a function of the independent variables $$x$$, $$y$$, and $$z$$, the partial derivative $$\pd{f}{x}{y,z}$$ is the derivative $$\df/\dx$$ with $$y$$ and $$z$$ held constant. It is important in thermodynamics to indicate the variables that are held constant, as $$\pd{f}{x}{y,z}$$ is not necessarily equal to $$\pd{f}{x}{a,b}$$ where $$a$$ and $$b$$ are variables different from $$y$$ and $$z$$. The variables shown at the bottom of a partial derivative should tell you which variables are being used as the independent variables. For example, if the partial derivative is $$\D\Pd{f}{y}{a,b}$$ then $$f$$ is being treated as a function of $$y$$, $$a$$, and $$b$$. ## E.3 Integrals Let $$f$$ be a function of the variable $$x$$. Imagine the range of $$x$$ between the limits $$x'$$ and $$x''$$ to be divided into many small increments of size $$\Del x_i (i = 1, 2, \ldots)$$. Let $$f_i$$ be the value of $$f$$ when $$x$$ is in the middle of the range of the $$i$$th increment. Then the integral \[ \int_{x'}^{x''} \!\! f \dx is the sum $$\sum_i f_i \Del x_i$$ in the limit as each $$\Del x_i$$ approaches zero and the number of terms in the sum approaches infinity. The integral is also the area under a curve of $$f$$ plotted as a function of $$x$$, measured from $$x = x'$$ to $$x = x''$$. The function $$f$$ is the integrand, which is integrated over the integration variable $$x$$.

This e-book uses the following integrals: \begin{align*} & \int_{x'}^{x''} \!\! \dx = x''-x' \cr & \int_{x'}^{x''}\frac{\dx}{x} = \ln \left| \frac{x''}{x'} \right| \cr & \int_{x'}^{x''} \!\! x^a \dx = \frac{1}{a+1} \left[ (x'')^{a+1} - (x')^{a+1} \right] \qquad \tx{($$a$$ is a constant other than $$-1$$)} \cr & \int_{x'}^{x''}\!\!\frac{\dx}{ax+b} = \frac{1}{a}\ln\left|\frac{ax''+b}{ax'+b}\right| \qquad \tx{($$a$$ is a constant)} \end{align*} Here are examples of the use of the expression for the third integral with $$a$$ set equal to $$1$$ and to $$-2$$: \begin{align*} & \int_{x'}^{x''} \!\! x \dx = \frac{1}{2}\left[(x'')^2-(x')^2\right] \cr & \int_{x'}^{x''} \! \frac{\dx}{x^2} = -\left( \frac{1}{x''} - \frac{1}{x'} \right) \end{align*}

## E.4 Line Integrals

A line integral is an integral with an implicit single integration variable that constraints the integration to a path.

The most frequently-seen line integral in this e-book, $$\int\!p\dif V$$, will serve as an example. The integral can be evaluated in three different ways:

1. The integrand $$p$$ can be expressed as a function of the integration variable $$V$$, so that there is only one variable. For example, if $$p$$ equals $$c/V$$ where $$c$$ is a constant, the line integral is given by $$\int\!p\dif V=c\int_{V_1}^{V_2}(1/V)\dif V = c\ln(V_2/V_1)$$.
2. If $$p$$ and $$V$$ can be written as functions of another variable, such as time, that coordinates their values so that they follow the desired path, this new variable becomes the integration variable.
3. The desired path can be drawn as a curve on a plot of $$p$$ versus $$V$$; then $$\int\!p\dif V$$ is equal in value to the area under the curve.

This page titled 15.5: Appendix E- Calculus Review is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Howard DeVoe via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.