15.3: Appendix C- Symbols for Physical Quantities
- Page ID
- 23775
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
\( \newcommand{\tx}[1]{\text{#1}} % text in math mode\)
\( \newcommand{\subs}[1]{_{\text{#1}}} % subscript text\)
\( \newcommand{\sups}[1]{^{\text{#1}}} % superscript text\)
\( \newcommand{\st}{^\circ} % standard state symbol\)
\( \newcommand{\id}{^{\text{id}}} % ideal\)
\( \newcommand{\rf}{^{\text{ref}}} % reference state\)
\( \newcommand{\units}[1]{\mbox{$\thinspace$#1}}\)
\( \newcommand{\K}{\units{K}} % kelvins\)
\( \newcommand{\degC}{^\circ\text{C}} % degrees Celsius\)
\( \newcommand{\br}{\units{bar}} % bar (\bar is already defined)\)
\( \newcommand{\Pa}{\units{Pa}}\)
\( \newcommand{\mol}{\units{mol}} % mole\)
\( \newcommand{\V}{\units{V}} % volts\)
\( \newcommand{\timesten}[1]{\mbox{$\,\times\,10^{#1}$}}\)
\( \newcommand{\per}{^{-1}} % minus one power\)
\( \newcommand{\m}{_{\text{m}}} % subscript m for molar quantity\)
\( \newcommand{\CVm}{C_{V,\text{m}}} % molar heat capacity at const.V\)
\( \newcommand{\Cpm}{C_{p,\text{m}}} % molar heat capacity at const.p\)
\( \newcommand{\kT}{\kappa_T} % isothermal compressibility\)
\( \newcommand{\A}{_{\text{A}}} % subscript A for solvent or state A\)
\( \newcommand{\B}{_{\text{B}}} % subscript B for solute or state B\)
\( \newcommand{\bd}{_{\text{b}}} % subscript b for boundary or boiling point\)
\( \newcommand{\C}{_{\text{C}}} % subscript C\)
\( \newcommand{\f}{_{\text{f}}} % subscript f for freezing point\)
\( \newcommand{\mA}{_{\text{m},\text{A}}} % subscript m,A (m=molar)\)
\( \newcommand{\mB}{_{\text{m},\text{B}}} % subscript m,B (m=molar)\)
\( \newcommand{\mi}{_{\text{m},i}} % subscript m,i (m=molar)\)
\( \newcommand{\fA}{_{\text{f},\text{A}}} % subscript f,A (for fr. pt.)\)
\( \newcommand{\fB}{_{\text{f},\text{B}}} % subscript f,B (for fr. pt.)\)
\( \newcommand{\xbB}{_{x,\text{B}}} % x basis, B\)
\( \newcommand{\xbC}{_{x,\text{C}}} % x basis, C\)
\( \newcommand{\cbB}{_{c,\text{B}}} % c basis, B\)
\( \newcommand{\mbB}{_{m,\text{B}}} % m basis, B\)
\( \newcommand{\kHi}{k_{\text{H},i}} % Henry's law constant, x basis, i\)
\( \newcommand{\kHB}{k_{\text{H,B}}} % Henry's law constant, x basis, B\)
\( \newcommand{\arrow}{\,\rightarrow\,} % right arrow with extra spaces\)
\( \newcommand{\arrows}{\,\rightleftharpoons\,} % double arrows with extra spaces\)
\( \newcommand{\ra}{\rightarrow} % right arrow (can be used in text mode)\)
\( \newcommand{\eq}{\subs{eq}} % equilibrium state\)
\( \newcommand{\onehalf}{\textstyle\frac{1}{2}\D} % small 1/2 for display equation\)
\( \newcommand{\sys}{\subs{sys}} % system property\)
\( \newcommand{\sur}{\sups{sur}} % surroundings\)
\( \renewcommand{\in}{\sups{int}} % internal\)
\( \newcommand{\lab}{\subs{lab}} % lab frame\)
\( \newcommand{\cm}{\subs{cm}} % center of mass\)
\( \newcommand{\rev}{\subs{rev}} % reversible\)
\( \newcommand{\irr}{\subs{irr}} % irreversible\)
\( \newcommand{\fric}{\subs{fric}} % friction\)
\( \newcommand{\diss}{\subs{diss}} % dissipation\)
\( \newcommand{\el}{\subs{el}} % electrical\)
\( \newcommand{\cell}{\subs{cell}} % cell\)
\( \newcommand{\As}{A\subs{s}} % surface area\)
\( \newcommand{\E}{^\mathsf{E}} % excess quantity (superscript)\)
\( \newcommand{\allni}{\{n_i \}} % set of all n_i\)
\( \newcommand{\sol}{\hspace{-.1em}\tx{(sol)}}\)
\( \newcommand{\solmB}{\tx{(sol,$\,$$m\B$)}}\)
\( \newcommand{\dil}{\tx{(dil)}}\)
\( \newcommand{\sln}{\tx{(sln)}}\)
\( \newcommand{\mix}{\tx{(mix)}}\)
\( \newcommand{\rxn}{\tx{(rxn)}}\)
\( \newcommand{\expt}{\tx{(expt)}}\)
\( \newcommand{\solid}{\tx{(s)}}\)
\( \newcommand{\liquid}{\tx{(l)}}\)
\( \newcommand{\gas}{\tx{(g)}}\)
\( \newcommand{\pha}{\alpha} % phase alpha\)
\( \newcommand{\phb}{\beta} % phase beta\)
\( \newcommand{\phg}{\gamma} % phase gamma\)
\( \newcommand{\aph}{^{\alpha}} % alpha phase superscript\)
\( \newcommand{\bph}{^{\beta}} % beta phase superscript\)
\( \newcommand{\gph}{^{\gamma}} % gamma phase superscript\)
\( \newcommand{\aphp}{^{\alpha'}} % alpha prime phase superscript\)
\( \newcommand{\bphp}{^{\beta'}} % beta prime phase superscript\)
\( \newcommand{\gphp}{^{\gamma'}} % gamma prime phase superscript\)
\( \newcommand{\apht}{\small\aph} % alpha phase tiny superscript\)
\( \newcommand{\bpht}{\small\bph} % beta phase tiny superscript\)
\( \newcommand{\gpht}{\small\gph} % gamma phase tiny superscript\)
\( \newcommand{\upOmega}{\Omega}\)
\( \newcommand{\dif}{\mathop{}\!\mathrm{d}} % roman d in math mode, preceded by space\)
\( \newcommand{\Dif}{\mathop{}\!\mathrm{D}} % roman D in math mode, preceded by space\)
\( \newcommand{\df}{\dif\hspace{0.05em} f} % df\)
\(\newcommand{\dBar}{\mathop{}\!\mathrm{d}\hspace-.3em\raise1.05ex{\Rule{.8ex}{.125ex}{0ex}}} % inexact differential \)
\( \newcommand{\dq}{\dBar q} % heat differential\)
\( \newcommand{\dw}{\dBar w} % work differential\)
\( \newcommand{\dQ}{\dBar Q} % infinitesimal charge\)
\( \newcommand{\dx}{\dif\hspace{0.05em} x} % dx\)
\( \newcommand{\dt}{\dif\hspace{0.05em} t} % dt\)
\( \newcommand{\difp}{\dif\hspace{0.05em} p} % dp\)
\( \newcommand{\Del}{\Delta}\)
\( \newcommand{\Delsub}[1]{\Delta_{\text{#1}}}\)
\( \newcommand{\pd}[3]{(\partial #1 / \partial #2 )_{#3}} % \pd{}{}{} - partial derivative, one line\)
\( \newcommand{\Pd}[3]{\left( \dfrac {\partial #1} {\partial #2}\right)_{#3}} % Pd{}{}{} - Partial derivative, built-up\)
\( \newcommand{\bpd}[3]{[ \partial #1 / \partial #2 ]_{#3}}\)
\( \newcommand{\bPd}[3]{\left[ \dfrac {\partial #1} {\partial #2}\right]_{#3}}\)
\( \newcommand{\dotprod}{\small\bullet}\)
\( \newcommand{\fug}{f} % fugacity\)
\( \newcommand{\g}{\gamma} % solute activity coefficient, or gamma in general\)
\( \newcommand{\G}{\varGamma} % activity coefficient of a reference state (pressure factor)\)
\( \newcommand{\ecp}{\widetilde{\mu}} % electrochemical or total potential\)
\( \newcommand{\Eeq}{E\subs{cell, eq}} % equilibrium cell potential\)
\( \newcommand{\Ej}{E\subs{j}} % liquid junction potential\)
\( \newcommand{\mue}{\mu\subs{e}} % electron chemical potential\)
\( \newcommand{\defn}{\,\stackrel{\mathrm{def}}{=}\,} % "equal by definition" symbol\)
\( \newcommand{\D}{\displaystyle} % for a line in built-up\)
\( \newcommand{\s}{\smash[b]} % use in equations with conditions of validity\)
\( \newcommand{\cond}[1]{\\[-2.5pt]{}\tag*{#1}}\)
\( \newcommand{\nextcond}[1]{\\[-5pt]{}\tag*{#1}}\)
\( \newcommand{\R}{8.3145\units{J$\,$K$\per\,$mol$\per$}} % gas constant value\)
\( \newcommand{\Rsix}{8.31447\units{J$\,$K$\per\,$mol$\per$}} % gas constant value - 6 sig figs\)
\( \newcommand{\jn}{\hspace3pt\lower.3ex{\Rule{.6pt}{2ex}{0ex}}\hspace3pt} \)
\( \newcommand{\ljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}} \hspace3pt} \)
\( \newcommand{\lljn}{\hspace3pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace1.4pt\lower.3ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise.45ex{\Rule{.6pt}{.5ex}{0ex}}\hspace-.6pt\raise1.2ex{\Rule{.6pt}{.5ex}{0ex}}\hspace3pt} \)
This appendix lists the symbols for most of the variable physical quantities used in this e-book. The symbols are those recommended in the IUPAC Green Book (Ian Mills et al, Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Blackwell, Oxford, 1993) except for quantities followed by an asterisk (\(^*\)). The first table lists Roman letter symbols, and the second lists Greek letter symbols.
\begin{array}{lll} \hline \textbf{Symbol} & \textbf{Physical quantity} & \textbf{SI unit} \\ \hline A & \tx{Helmholtz energy} & \tx{J} \\ \As & \tx{surface area} & \tx{m}^2 \\ a & \tx{activity} & \tx{(dimensionless)} \\ B & \tx{second virial coefficient} & \tx{m}^3 \tx{ mol}^{-1} \\ C & \tx{number of components}^* & \tx{(dimensionless)} \\ C_p & \tx{heat capacity at constant pressure} & \tx{J K}^{-1} \\ C_V & \tx{heat capacity at constant volume} & \tx{J K}^{-1} \\ c & \tx{concentration} & \tx{mol m}^{-3} \\ E & \tx{energy} & \tx{J} \\ & \tx{electrode potential} & \tx{V} \\ \boldsymbol{E} & \tx{electric field strength} & \tx{V m}^{-1} \\ E\cell & \tx{cell potential} & \tx{V} \\ \Ej & \tx{liquid junction potential} & \tx{V} \\ E\sys & \tx{system energy in a lab frame} & \tx{J} \\ F & \tx{force} & \tx{N} \\ & \tx{number of degrees of freedom}^* & \tx{(dimensionless)} \\ \fug & \tx{fugacity} & \tx{Pa} \\ g & \tx{acceleration of free fall} & \tx{m s}^{-2} \\ G & \tx{Gibbs energy} & \tx{J} \\ h & \tx{height, elevation} & \tx{m} \\ H & \tx{enthalpy} & \tx{J} \\ \boldsymbol{H} & \tx{magnetic field strength} & \tx{A m}^{-1} \\ I & \tx{electric current} & \tx{A} \\ I_m & \tx{ionic strength, molality basis} & \tx{mol kg}^{-1} \\ I_c & \tx{ionic strength, concentration basis} & \tx{mol m}^{-3} \\ K & \tx{thermodynamic equilibrium constant} & \tx{(dimensionless)} \\ K\subs{a} & \tx{acid dissociation constant} & \tx{(dimensionless)} \\ K_p & \tx{equilibrium constant, pressure basis} & \tx{Pa}^{\sum\nu} \\ K\subs{s} & \tx{solubility product} & \tx{(dimensionless)} \\ \kHi & \tx{Henry’s law constant of species }i, \\ & \quad \tx{mole fraction basis} & \tx{Pa} \\ k_{c,i} & \tx{Henry’s law constant of species }i, \\ & \quad \tx{concentration basis}^* & \tx{Pa m}^3\tx{ mol}^{-1} \\ k_{m,i} & \tx{Henry’s law constant of species }i, \\ & \quad \tx{molality basis}^* & \tx{Pa kg mol}^{-1} \\ l & \tx{length, distance} & \tx{m} \\ L & \tx{relative partial molar enthalpy}^* & \tx{J mol}^{-1} \\ M & \tx{molar mass} & \tx{kg mol}^{-1} \\ \boldsymbol{M} & \tx{magnetization} & \tx{A m}^{-1} \\ M\subs{r} & \tx{relative molecular mass (molecular weight)} & \tx{(dimensionless)} \\ m & \tx{mass} & \tx{kg} \\ m_i & \tx{molality of species }i & \tx{mol kg}^{-1} \\ N & \tx{number of entities (molecules, atoms, ions,} \\ & \quad \tx{formula units, etc.)} & \tx{(dimensionless)} \\ n & \tx{amount of substance} & \tx{mol} \\ P & \tx{number of phases}^* & \tx{(dimensionless)} \\ p & \tx{pressure} & \tx{Pa} \\ & \tx{partial pressure} & \tx{Pa} \\ \boldsymbol{P} & \tx{dielectric polarization} & \tx{C m}^{-2} \\ Q & \tx{electric charge} & \tx{C} \\ Q\sys & \tx{charge entering system at right conductor}^* & \tx{C} \\ Q\subs{rxn} & \tx{reaction quotient}^* & \tx{(dimensionless)} \\ q & \tx{heat} & \tx{J} \\ R\el & \tx{electric resistance}^* & \Omega \\ S & \tx{entropy} & \tx{J K}^{-1} \\ s & \tx{solubility} & \tx{mol m}^{-3} \\ & \tx{number of species}^* & \tx{(dimensionless)} \\ T & \tx{thermodynamic temperature} & \tx{K} \\ t & \tx{time} & \tx{s} \\ & \tx{Celsius temperature} & \degC \\ U & \tx{internal energy} & \tx{J} \\ V & \tx{volume} & \tx{m}^3 \\ v & \tx{specific volume} & \tx{m}^3\tx{ kg}^{-1} \\ & \tx{velocity, speed} & \tx{m s}^{-1} \\ w & \tx{work} & \tx{J} \\ & \tx{mass fraction (weight fraction)} & \tx{(dimensionless)} \\ w\el & \tx{electrical work}^* & \tx{J} \\ w' & \tx{nonexpansion work}^* & \tx{J} \\ x & \tx{mole fraction in a phase} & \tx{(dimensionless)} \\ & \tx{Cartesian space coordinate} & \tx{m} \\ y & \tx{mole fraction in gas phase} & \tx{(dimensionless)} \\ & \tx{Cartesian space coordinate} & \tx{m} \\ Z & \tx{compression factor (compressibility factor)} & \tx{(dimensionless)} \\ z & \tx{mole fraction in multiphase system}^* & \tx{(dimensionless)} \\ & \tx{charge number of an ion} & \tx{(dimensionless)}\\ & \tx{electron number of cell reaction} & \tx{(dimensionless)} \\ & \tx{Cartesian space coordinate} & \tx{m} \\ \hline \end{array}
\begin{array}{lll} \hline \textbf{Symbol} & \textbf{Physical quantity} & \textbf{SI unit} \\ \hline \alpha & \tx{degree of reaction, dissociation, etc.} & \tx{(dimensionless)} \\ & \tx{cubic expansion coefficient} & \tx{K}^{-1} \\ \g & \tx{surface tension} & \tx{N m}^{-1}, \tx{J m}^{-2} \\ \g_i & \tx{activity coefficient of species i,} \\ & \quad \tx{pure liquid or solid standard state}^* & \tx{(dimensionless)} \\ \g_{m,i} & \tx{activity coefficient of species i,} \\ & \quad \tx{molality basis} & \tx{(dimensionless)} \\ \g_{c,i} & \tx{activity coefficient of species i,} \\ & \quad \tx{concentration basis} & \tx{(dimensionless)} \\ \g_{x,i} & \tx{activity coefficient of species i,} \\ & \quad \tx{mole fraction basis} & \tx{(dimensionless)} \\ \g_{\pm} & \tx{mean ionic activity coefficient} & \tx{(dimensionless)} \\ \G & \tx{pressure factor (activity of a reference state)}^* & \tx{(dimensionless)} \\ \epsilon & \tx{efficiency of a heat engine} & \tx{(dimensionless)} \\ & \tx{energy equivalent of a calorimeter}^* & \tx{J K}^{-1} \\ \vartheta & \tx{angle of rotation} & \tx{(dimensionless)} \\ \kappa & \tx{reciprocal radius of ionic atmosphere} & \tx{m}^{-1} \\ \kappa _T & \tx{isothermal compressibility} & \tx{Pa}^{-1} \\ \mu & \tx{chemical potential} & \tx{J mol}^{-1} \\ \mu\subs{JT} & \tx{Joule–Thomson coefficient} & \tx{K Pa}^{-1} \\ \nu & \tx{number of ions per formula unit} & \tx{(dimensionless)} \\ & \tx{stoichiometric number} & \tx{(dimensionless)} \\ \nu_+ & \tx{number of cations per formula unit} & \tx{(dimensionless)} \\ \nu_- & \tx{number of anions per formula unit} & \tx{(dimensionless)} \\ \xi & \tx{advancement (extent of reaction)} & \tx{mol} \\ \varPi & \tx{osmotic pressure} & \tx{Pa} \\ \rho & \tx{density} & \tx{kg m}^{-3} \\ \tau & \tx{torque}^* & \tx{J} \\ \phi & \tx{fugacity coefficient} & \tx{(dimensionless)} \\ & \tx{electric potential} & \tx{V} \\ \Del\phi & \tx{electric potential difference} & \tx{V} \\ \phi_m & \tx{osmotic coefficient, molality basis} & \tx{(dimensionless)} \\ \varPhi_L & \tx{relative apparent molar enthalpy of solute}^* & \tx{J} mol^{-1} \\ \omega & \tx{angular velocity} & \tx{s}^{-1} \\ \hline \end{array}