# 12.8.2: The Diffusion Constant

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The diffusive flow of particles can be studied by applying a constant force $$f$$ to a system using the microscopic equations of motion

\begin{align*} \dot{\textbf r}_i &= { {\textbf p}_i \over m_i} \\[4pt] \dot{\textbf p}_i &= {\textbf F}_i({\textbf q}_1,..,{\textbf q}_N) + f\hat{\textbf x} \end{align*}

which have the conserved energy

$H' = \sum_{i=1}^N {{\textbf p}_i^2 \over 2m_i} + U({\textbf q}_1,...,{\textbf q}_N) -f\sum_{i=1}^Nx_i \nonumber$

Since the force is applied in the $$\hat{\textbf x}$$ direction, there will be a net flow of particles in this direction, i.e., a current $$J_x$$. Since this current is a thermodynamic quantity, there is an estimator for it:

$u_x = \sum_{i=1}^N \dot{x}_i \nonumber$

and $$J_x = \langle u_x \rangle$$. The constant force can be considered as arising from a potential field

$\phi(x) = -xf \nonumber$

The potential gradient $$\partial \phi/\partial x$$ will give rise to a concentration gradient $$\partial c / \partial x$$ which is opposite to the potential gradient and related to it by

${\partial c \over \partial x} = -{1 \over kT}{\partial \phi \over \partial x} \nonumber$

However, Fick's law tells how to relate the particle current $$J_x$$ to the concentration gradient

\begin{align*} J_x &= D\dfrac{\partial c}{\partial x} \\[4pt] &= -\dfrac{D}{kT} \dfrac{\partial \phi}{\partial x} \\[4pt] &= \dfrac{D}{kT}f \end{align*}

where $$D$$ is the diffusion constant. Solving for $$D$$ gives

\begin{align*} D &= kT \dfrac{J_x}{f} \\[4pt] &= kT\lim_{t\rightarrow\infty}{\langle u_x(t)\rangle \over f} \end{align*}

Let us apply the linear response formula again to the above nonequilibrium average. Again, we make the identification:

$F_e(t) = 1\;\;\;\;\;\;{\textbf D}_i = f\hat{\textbf x}\;\;\;\;\;{\textbf C}_i=0 \nonumber$

Thus,

\begin{align*} \langle u_x(t) \rangle &= \langle u_x\rangle_0 + \beta\int_0^t dsf\langle \left(\sum_{i=1}^N\dot{x}_i(0)\right)\left(\sum_{i=1}^N\dot{x}_i(t-s)\right)\rangle_0 \\[4pt] &= \langle u_x \rangle_0 + \beta f\int_0^t ds\sum_{i,j}\langle \dot{x}_i(0)\dot{x}_j(t-s)\rangle_0 \end{align*}

In equilibrium, it can be shown that there are no cross correlations between different particles. Consider the initial value of the correlation function. From the virial theorem, we have

$\langle \dot{x}_i\dot{x}_j\rangle_0 = \delta_{ij}\langle \dot{x}_i^2\rangle_0 \nonumber$

which vanishes for $$i \ne j$$. In general,

$\langle \dot{x}_i(0)\dot{x}_j(t)\rangle_0 = \delta_{ij}\langle \dot{x}_i(0)\dot{x}_i(t-s)\rangle_0 \nonumber$

Thus,

$\langle u_x(t)\rangle = \langle u_x\rangle_0 + \beta f \int_0^t ds\sum_{i=1}^N\dot{x}_i(0)\dot{x}_i(t-s)\rangle_0 \nonumber$

In equilibrium, $$\langle u_x \rangle _0 = 0$$ being linear in the velocities (hence momenta). Thus, the diffusion constant is given by, when the limit $$t \rightarrow \infty$$ is taken,

$D = \int_0^{\infty} \sum_{i=1}^N\langle\dot{x}_i(0)\dot{x}_i(t)\rangle_0 \nonumber$

However, since no spatial direction is preferred, we could also choose to apply the external force in the $${y}$$ or $$z$$ directions and average the result over the these three. This would give a diffusion constant

$D = {1 \over 3}\int_0^{\infty} dt \sum_{i=1}^N\langle \dot{\textbf r}_i(0)\cdot\dot{\textbf r}_i(t)\rangle_0 \nonumber$

The quantity

$\sum_{i=1}^N\langle \dot{\textbf r}_i(0)\cdot\dot{\textbf r}_i(t)\rangle_0 \nonumber$

is known as the velocity autocorrelation function, a quantity we will encounter again in other contexts.

This page titled 12.8.2: The Diffusion Constant is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.