12.8.2: The Diffusion Constant
- Page ID
- 5284
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The diffusive flow of particles can be studied by applying a constant force \(f\) to a system using the microscopic equations of motion
\[\begin{align*} \dot{\textbf r}_i &= { {\textbf p}_i \over m_i} \\[4pt] \dot{\textbf p}_i &= {\textbf F}_i({\textbf q}_1,..,{\textbf q}_N) + f\hat{\textbf x} \end{align*} \]
which have the conserved energy
\[ H' = \sum_{i=1}^N {{\textbf p}_i^2 \over 2m_i} + U({\textbf q}_1,...,{\textbf q}_N) -f\sum_{i=1}^Nx_i \nonumber \]
Since the force is applied in the \( \hat{\textbf x} \) direction, there will be a net flow of particles in this direction, i.e., a current \(J_x \). Since this current is a thermodynamic quantity, there is an estimator for it:
\[ u_x = \sum_{i=1}^N \dot{x}_i \nonumber \]
and \(J_x = \langle u_x \rangle \). The constant force can be considered as arising from a potential field
\[ \phi(x) = -xf \nonumber \]
The potential gradient \( \partial \phi/\partial x \) will give rise to a concentration gradient \(\partial c / \partial x \) which is opposite to the potential gradient and related to it by
\[ {\partial c \over \partial x} = -{1 \over kT}{\partial \phi \over \partial x} \nonumber \]
However, Fick's law tells how to relate the particle current \(J_x \) to the concentration gradient
\[\begin{align*} J_x &= D\dfrac{\partial c}{\partial x} \\[4pt] &= -\dfrac{D}{kT} \dfrac{\partial \phi}{\partial x} \\[4pt] &= \dfrac{D}{kT}f \end{align*}\]
where \(D\) is the diffusion constant. Solving for \(D\) gives
\[\begin{align*} D &= kT \dfrac{J_x}{f} \\[4pt] &= kT\lim_{t\rightarrow\infty}{\langle u_x(t)\rangle \over f} \end{align*}\]
Let us apply the linear response formula again to the above nonequilibrium average. Again, we make the identification:
\[ F_e(t) = 1\;\;\;\;\;\;{\textbf D}_i = f\hat{\textbf x}\;\;\;\;\;{\textbf C}_i=0 \nonumber \]
Thus,
\[ \begin{align*} \langle u_x(t) \rangle &= \langle u_x\rangle_0 + \beta\int_0^t dsf\langle \left(\sum_{i=1}^N\dot{x}_i(0)\right)\left(\sum_{i=1}^N\dot{x}_i(t-s)\right)\rangle_0 \\[4pt] &= \langle u_x \rangle_0 + \beta f\int_0^t ds\sum_{i,j}\langle \dot{x}_i(0)\dot{x}_j(t-s)\rangle_0 \end{align*} \]
In equilibrium, it can be shown that there are no cross correlations between different particles. Consider the initial value of the correlation function. From the virial theorem, we have
\[ \langle \dot{x}_i\dot{x}_j\rangle_0 = \delta_{ij}\langle \dot{x}_i^2\rangle_0 \nonumber \]
which vanishes for \(i \ne j \). In general,
\[ \langle \dot{x}_i(0)\dot{x}_j(t)\rangle_0 = \delta_{ij}\langle \dot{x}_i(0)\dot{x}_i(t-s)\rangle_0 \nonumber \]
Thus,
\[ \langle u_x(t)\rangle = \langle u_x\rangle_0 + \beta f \int_0^t ds\sum_{i=1}^N\dot{x}_i(0)\dot{x}_i(t-s)\rangle_0 \nonumber \]
In equilibrium, \(\langle u_x \rangle _0 = 0 \) being linear in the velocities (hence momenta). Thus, the diffusion constant is given by, when the limit \( t \rightarrow \infty \) is taken,
\[ D = \int_0^{\infty} \sum_{i=1}^N\langle\dot{x}_i(0)\dot{x}_i(t)\rangle_0 \nonumber \]
However, since no spatial direction is preferred, we could also choose to apply the external force in the \( {y} \) or \(z \) directions and average the result over the these three. This would give a diffusion constant
\[ D = {1 \over 3}\int_0^{\infty} dt \sum_{i=1}^N\langle \dot{\textbf r}_i(0)\cdot\dot{\textbf r}_i(t)\rangle_0 \nonumber \]
The quantity
\[ \sum_{i=1}^N\langle \dot{\textbf r}_i(0)\cdot\dot{\textbf r}_i(t)\rangle_0 \nonumber \]
is known as the velocity autocorrelation function, a quantity we will encounter again in other contexts.