# 4.3: Relation between Canonical and Microcanonical Ensembles

• • Mark Tuckerman
• New York University
$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We saw that the $$E (N, V, S)$$ and $$A (N, V, T)$$ could be related by a Legendre transformation. The partition functions $$\Omega (N, V, E)$$ and $$Q (N, V, T)$$ can be related by a Laplace transform. Recall that the Laplace transform $$\tilde {f} (\lambda)$$ of a function $$f (x)$$ is given by

$\tilde {f} (\lambda) = \int _{0}^{\infty} dx e^{- \lambda x} f (x) \nonumber$

Let us compute the Laplace transform of $$\Omega (N, V, E )$$ with respect to $$E$$:

$\tilde {\Omega} (N, V, \lambda ) = C_N \int _{0}^{\infty} dE e^{- \lambda E} \int dx \delta ( H (x) - E ) \nonumber$

Using the $$\delta$$-function to do the integral over $$E$$:

$\tilde {\Omega} (N, V, \lambda ) = C_N \int dx e^{- \lambda H (x) } \nonumber$

By identifying $$\lambda = \beta$$, we see that the Laplace transform of the microcanonical partition function gives the canonical partition function $$Q (N, V, T )$$.

This page titled 4.3: Relation between Canonical and Microcanonical Ensembles is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.