Skip to main content
Chemistry LibreTexts

10.1: Overview

  • Page ID
    470394
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Learning Objectives
    • Students will be able to use Orca1–4 and Avodagro5,6 to calculate and visualize the molecular orbitals of cinnamic acid.
    • Students will be able to relate the HOMO-LUMO gap of a compound to the wavelength of light necessary to cause the promotion of an electron,

    Overview: This exercise seeks to help you understand how the frontier molecular orbitals interact to allow for a light-mediated [2+2] cycloaddition. Specifically, you will calculate and examine the molecular orbitals of cinnamic acid to determine which orbitals will overlap to form the [2+2] cyclized product, truxillic acid. From these data you will calculate the wavelength of light required to mediate the [2+2] cycloaddition between two molecules of cinnamic acid to yield truxillic acid.

    Faculty Notes: This exercise is designed to help students better understand the molecular orbital overlap required for a successful 2+2 cycloaddition. Before assigning this exercise, students should have learned the basic concepts of Frontier Molecular Orbital Theory, and the mechanism of [2+2] and [4+2] cycloaddition reactions. Using a standard desktop computer, the computation in this exercise takes 45 minutes. Overall, this exercise should take students about an hour and 15 minutes.


    This page titled 10.1: Overview is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Nicholas Boaz and Orion Pearce.

    • Was this article helpful?