Skip to main content
Chemistry LibreTexts

15.3: Reaction Rates

  • Page ID
  • Learning Objectives

    • Define chemical reaction rate.
    • Describe the effects of temperature, concentration, surface area, and catalysis on reaction rates.

    The lizard in the photograph is not simply enjoying the sunshine or working on its tan. The heat from the sun’s rays is critical to the lizard’s survival. A warm lizard can move faster than a cold one because the chemical reactions that allow its muscles to move occur more rapidly at higher temperatures. In the absence of warmth, the lizard is an easy meal for predators.

    Figure \(\PageIndex{1}\) An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up.

    From baking a cake to determining the useful lifespan of a bridge, rates of chemical reactions play important roles in our understanding of processes that involve chemical changes.

    A rate is a measure of how some property varies with time. Speed is a familiar rate that expresses the distance traveled by an object in a given amount of time. Wage is a rate that represents the amount of money earned by a person working for a given amount of time. Likewise, the rate of a chemical reaction is a measure of how much reactant is consumed, or how much product is produced, by the reaction in a given amount of time.

    The rate of reaction is the change in the amount of a reactant or product per unit time. Reaction rates are therefore determined by measuring the time dependence of some property that can be related to reactant or product amounts. Rates of reactions that consume or produce gaseous substances, for example, are conveniently determined by measuring changes in volume or pressure. For reactions involving one or more colored substances, rates may be monitored via measurements of light absorption. For reactions involving aqueous electrolytes, rates may be measured via changes in a solution’s conductivity.

    For reactants and products in solution, their relative amounts (concentrations) are conveniently used for purposes of expressing reaction rates. If we measure the concentration of hydrogen peroxide, H2O2, in an aqueous solution, we find that it changes slowly over time as the H2O2 decomposes, according to the equation:

    \[\ce{2H2O2}(aq)⟶\ce{2H2O}(l)+\ce{O2}(g) \nonumber \]

    The rate at which the hydrogen peroxide decomposes can be expressed in terms of the rate of change of its concentration, as shown here:

    \ce{rate\: of\: decomposition\: of\: H_2O_2}
    &=\mathrm{−\dfrac{change\: in\: concentration\: of\: reactant}{time\: interval}}\\[4pt]

    Factors Affecting Reaction Rates

    By their nature, some reactions occur very quickly, while others are very slow. However, certain changes in the reacting conditions can have an effect on the rate of a given chemical reaction.


    The rates of many reactions depend on the concentrations of the reactants. Rates usually increase when the concentration of one or more of the reactants increases. In a polluted atmosphere where the concentration of sulfur dioxide is high, calcium carbonate deteriorates more rapidly than in less polluted air. Similarly, phosphorus burns much more rapidly in an atmosphere of pure oxygen than in air, which is only about 20% oxygen.

    A photograph is shown of an angel statue. While some details of the statue, including facial features, are present, effects of weathering appear to be diminishing these features.
    Figure \(\PageIndex{2}\) Pollutants like sulfur dioxide can accelerate weathering of statues made from carbonate compounds such as limestone and marble (credit: James P Fisher III).

    Phosphorus Burning

    Video \(\PageIndex{1}\) Phosphorous burns rapidly in air, but it will burn even more rapidly if the concentration of oxygen in is higher.

    Surface Area

    A large log placed in a fire will burn relatively slowly. If the same mass of wood were added to the fire in the form of small twigs, they would burn much more quickly. This is because the twigs provide a greater surface area than the log does. An increase in the surface area of a reactant increases the rate of a reaction. Surface area is larger when a given amount of a solid is present as smaller particles. A powdered reactant has a greater surface area than the same reactant as a solid chunk. In order to increase the surface area of a substance, it may be ground into smaller particles or dissolved into a liquid. In solution, the dissolved particles are separated from each other and will react more quickly with other reactants.


    Chemical reactions typically occur faster at higher temperatures. Food can spoil quickly when left on the kitchen counter. However, the lower temperature inside of a refrigerator slows that process so that the same food remains fresh for days. We use a burner or a hot plate in the laboratory to increase the speed of reactions that proceed slowly at ordinary temperatures. In many cases, an increase in temperature of only 10 °C will approximately double the rate of a reaction in a homogeneous system.

    The Presence of a Catalyst

    Hydrogen peroxide solutions foam when poured onto an open wound because substances in the exposed tissues act as catalysts, increasing the rate of hydrogen peroxide’s decomposition. However, in the absence of these catalysts (for example, in the bottle in the medicine cabinet) complete decomposition can take months. A catalyst is a substance that increases the rate of a chemical reaction by providing an alternative pathway or mechanism for the reaction to follow.


    • The reaction rate indicates how fast the reaction proceeds.
    • Factors affecting reaction rate are:
      • Concentration of reactants
      • Surface area
      • Temperature
      • Presence of catalysts

    Contributors and Attributions

    • Was this article helpful?