Skip to main content
[ "article:topic", "showtoc:no", "license:ccbyncsa" ]
Chemistry LibreTexts

2.0: Prelude to Elements, Atoms, and the Periodic Table

  • Page ID
    133079
  • The hardest material in the human body is tooth enamel. It has to be hard so that our teeth can serve us for a lifetime of biting and chewing; however, tough as it is, tooth enamel is susceptible to chemical attack. Acids found in some foods or made by bacteria that feed on food residues on our teeth are capable of dissolving enamel. Unprotected by enamel, a tooth will start to decay, thus developing cavities and other dental problems.

    In the early 1900s, a dentist in Colorado Springs, Colorado, noted that many people who lived in the area had brown-stained teeth that, while unsightly, were surprisingly resistant to decay. After years of study, excess fluorine compounds in the drinking water were discovered to be the cause of both these effects. Research continued, and in the 1930s, the US Public Health Service found that low levels of fluorine in water would provide the benefit of resisting decay without discoloring teeth.

    The protective effects of fluorine have a simple chemical explanation. Tooth enamel consists mostly of a mineral called hydroxyapatite, which is composed of calcium, phosphorus, oxygen, and hydrogen. We know now that fluorine combines with hydroxyapatite to make fluorapatite, which is more resistant to acidic decay than hydroxyapatite is. Currently about 50% of the US population drinks water that has some fluorine added (in the form of sodium fluoride, NaF) to reduce tooth decay. This intentional fluoridation, coupled with the use of fluoride-containing toothpastes and improved oral hygiene, has reduced tooth decay by as much as 60% in children. The nationwide reduction of tooth decay has been cited as an important public health advance in history. (Another important advance was the eradication of polio.)