Skip to main content
Chemistry LibreTexts

6.9: VSEPR and Polarity

  • Page ID
    408819
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    VSEPR

    Lewis dot structures are a great tool to visualize how electrons can be arranged in molecules. Further, drawing resonance structures and determining the formal charge can help us determine which structures are most stable. However, neither of these tools provide much insight into the physical configuration of a molecule in 3D space. For this, we turn to Valence Shell Electron Pair Repulsion theory, or VSEPR.

    Once we draw a viable Lewis structure, we can use the following chart to translate the 2D representation to a 3D geometry:

    Screen Shot 2022-09-06 at 11.17.35 PM.png

    Chart courtesy of Boundless.com. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

    Example: Draw Lewis dot diagrams and determine the 3D VSEPR geometry of the following molecules:

    \(\mathrm{CH}_4, \mathrm{NH}_3, \mathrm{H}_2 \mathrm{O}, \mathrm{SO}_3, \mathrm{SO}_2, \mathrm{CO}_2\)

    Answer
      Lewis dot diagram Electrons around central atom VESPR description Sketch of 3D model
    \(\mathrm{CH}_4\) Screen Shot 2022-09-06 at 11.24.53 PM.png

    - 4 groups of electrons in bonds

    - 0 lone pairs

    tetrahedral Screen Shot 2022-09-06 at 11.26.52 PM.png
    \(\mathrm{NH}_3\) Screen Shot 2022-09-06 at 11.24.58 PM.png

    -3 groups of electrons in bonds

    -1 lone pair

    trigonal pyramidal Screen Shot 2022-09-06 at 11.26.58 PM.png
    \(\mathrm{H}_2\mathrm{O}\) Screen Shot 2022-09-06 at 11.25.03 PM.png

    - 4 groups of electrons in bonds

    - 0 lone pairs

    bent Screen Shot 2022-09-06 at 11.27.01 PM.png
    \(\mathrm{SO}_3\) Screen Shot 2022-09-06 at 11.25.14 PM.png

    - 4 groups of electrons in bonds

    - 0 lone pairs

    trigonal planar Screen Shot 2022-09-06 at 11.27.05 PM.png
    \(\mathrm{SO}_2\) Screen Shot 2022-09-06 at 11.25.21 PM.png

    - 4 groups of electrons in bonds

    - 0 lone pairs

    bent Screen Shot 2022-09-06 at 11.27.10 PM.png
    \(\mathrm{CO}_2\) Screen Shot 2022-09-06 at 11.25.27 PM.png

    - 4 groups of electrons

    - 0 lone pairs

    linear Screen Shot 2022-09-06 at 11.27.14 PM.png

    Polarity

    The difference in electronegativity across a molecule can generate electric dipole moments. Dipole moments are vector quantities, and by convention point from a more positive region of charge to a more negative region. If individual dipoles within a molecule cancel, there is no net dipole.

    Example: Determine whether \(\mathrm{CO}_2\) and \(\mathrm{H}_2\mathrm{O}\) have a net dipole moment.

    Answer

    Screen Shot 2022-09-06 at 11.29.27 PM.png

    In \(\mathrm{CO}_2\), the two electronic dipoles are exactly opposite and cancel each other, so there isn’t a net dipole. Carbon dioxide is not a polar molecule.

    Screen Shot 2022-09-06 at 11.30.36 PM.png

    In \(\mathrm{H}_2\mathrm{O}\), the electronic dipoles don’t fully cancel, so there is a net dipole moment. Water is a polar molecule!


    6.9: VSEPR and Polarity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?