Skip to main content
Chemistry LibreTexts

8: Metal/Nucleic Acid Interactions

  • Page ID
    59627
  • I. Introduction

    The interest of the bioinorganic community in the field of metal/nucleic-acid interactions has burgeoned in the last decade. This interest and the resulting progress have come about primarily because of the tremendous advances that have occurred in nucleic-acid technology. We can now isolate, manipulate, and even synthesize nucleic acids of defined sequence and structure, as we would other molecules that chemists commonly explore. Furthermore, as may be evident already in other chapters of this book, bioinorganic chemistry has itself been evolving from a field focused on delineating metal centers in biology to one that includes also the application of inorganic chemistry to probe biological structures and function. In the past decades it has become clear that nucleic acids, structurally, functionally and even remarkably in terms of catalysis, play active and diverse roles in Nature. Transition-metal chemistry, both in the cell and in the chemist's test tube, provides a valuable tool both to accomplish and to explore these processes.

    There are also many practical motivations behind the study of how metal ions and complexes interact with nucleic acids. Heavy-metal toxicity in our environment arises in part from the covalent interactions of heavy-metal ions with nucleic acids. In addition, these heavy metals interfere with metalloregulatory proteins and in so doing disrupt gene expression. We need to understand the functioning of the natural metalloregulators of gene expression and we need to design new metal-specific ligands, which, like the proteins themselves, capture heavy metals before their damage is done. Heavy-metal interactions with nucleic acids indeed have provided the basis also for the successful application of cisplatin and its derivatives as anticancer chemotherapeutic agents (see Chapter 9). The design of new pharmaceuticals like cisplatin requires a detailed understanding of how platinum and other metal ions interact with nucleic acids and nucleic-acid processing. Furthermore, we are finding that metal complexes can be uniquely useful in developing spectroscopic and reactive probes of nucleic acids, and hence may become valuable in developing new diagnostic agents. Finally, Nature itself takes advantage of metal/nucleic-acidchemistry, from the biosynthesis of natural products such as bleomycin, which chelates redox-active metal ions to target and damage foreign DNA, to the development of basic structural motifs for eukaryotic regulatory proteins, the zinc-finger proteins, which bind to DNA and regulate transcription. In all these endeavors, we need first to develop an understanding of how transition-metal ions and complexes interact with nucleic acids and how this chemistry may best be exploited.

    In this chapter we first summarize the "basics" needed to consider the interactions of metal ions and complexes with nucleic acids. What are the structures of nucleic acids? What is the basic repertoire of modes of association and chemical reactions that occur between coordination complexes and polynucleotides? We then consider in some detail the interaction of a simple family of coordination complexes, the tris(phenanthroline) metal complexes, with DNA and RNA to illustrate the techniques, questions, and applications of metal/nucleic-acid chemistry that are currently being explored. In this section, the focus on tris(phenanthroline) complexes serves as a springboard to compare and contrast studies of other, more intricately designed transition-metal complexes (in the next section) with nucleic acids. Last we consider how Nature uses metal ions and complexes in carrying out nucleic-acid chemistry. Here the principles, techniques, and fundamental coordination chemistry of metals with nucleic acids provide the foundation for our current understanding of how these fascinating and complex bioinorganic systems may function.

    III. A Case Study: Tris(phenanthroline) Metal Complexes

    V. Nature's Use of Metal/Nucleic-acid Interactions

    VI. References

    1. W. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, 1984; J. K. Barton, Chem. Eng. News 66 (Sept. 26, 1988), 30.
    2. M. McCall, T. Brown, and O. Kennard, J. Mol. Biol. 183 (1985), 385.
    3. R. Wing et al., Nature 287 (1980), 755.
    4. A. H.-J. Wang et al., Nature 282 (1979), 680.
    5. S. H. Kim et al., Proc. Natl. Acad. Sci. USA 71 (1974), 4970.
    6. E. N. Trifonov and J. L. Sussman, Proc. Natl. Acad. Sci USA 77 (1980), 3816; J. C. Marini et al., Proc. Natl. Acad. Sci. USA 79 (1982), 7664; H.-S. Koo, H.-M. Wu, and D. M. Crothers, Nature 320 (1986), 501.
    7. M. Gellert et al., Cold Spring Harbor Symps. Quant. Biol. 43 (1979), 35; D. M. J. Lilley, Proc. Natl. Acad. Sci. USA 77 (1980), 6468.
    8. J. S. Lee et al., Nucleic Acids Res. 12 (1984), 6603; V. I. Lyamichev, J. Biomol. Struct. Dyn. 3 (1986), 667; H. Htun and J. E. Dahlberg, Science 241 (1988), 1791.
    9. R. D. Kornberg, Annu. Rev. Biochem. 46 (1977), 931; A. Klug et al., Nature 287 (1980), 509.
    10. T. R. Cech, Science 236 (1987), 1532.
    11. (a) J. K. Barton and S. J. Lippard, Metal Ions in Biol. 1 (1980), 31; (b) A. M. Pyle and J. K. Barton, Prog. Inorg. Chem. 38 (1990), 413; (c) C. S. Chow and J. K. Barton, Meth. Enzym. 212 (1992), 219.
    12. S. E. Sherman et al., Science 230 (1985), 412.
    13. D. Hodgson, Prog. Inorg. Chem. 23 (1977), 211.
    14. G. L. Eichhorn and Y. A. Shin, J. Am. Chem. Soc. 90 (1968), 7323.
    15. L. G. Marzilli, Prog. Inorg. Chem. 23 (1977), 255.
    16. C. H. Chang, M. Beer, and L. G. Marzilli, Biochemistry 16 (1977), 33; G. C. Glikin et al., Nucleic Acids Res. 12 (1984), 1725.
    17. M. B. Fleisher, H. Y. Mei, and J. K. Barton, Nucleic Acids and Mol. Biol. 2 (1988), 65.
    18. S. J. Lippard, Acc. Chem. Res. 11 (1978), 211.
    19. R. V. Gessner et al., Biochemistry 24 (1985), 237.
    20. (a) K. W. Jennette et al., Proc. Natl. Acad. Sci. USA 71 (1974), 3839; (b) A. H. Wang et al., Nature 276 (1978), 471.
    21. H. Sigel, in T. D. Tullius, ed., Metal-DNA Chemistry, ACS Symposium 402 (1989), 159.
    22. R. P. Hertzberg and P. B. Dervan, J. Am. Chem. Soc. 104 (1982), 313; R. P. Hertzberg and P. B. Dervan, Biochemistry 23 (1984), 3934.
    23. J. A. Latham and T. R. Cech, Science 245 (1989), 276.
    24. P. B. Dervan, Science 232 (1986), 464.
    25. S. M. Hecht, ed., Bleomycin, Springer-Verlag, 1979.
    26. D. S. Sigman, Acc. Chem. Res. 19 (1986), 180; S. Goldstein and G. Czapski, J. Am. Chem. Soc. 108 (1986), 2244.
    27. For other examples of metal-mediated redox cleavage of DNA, see also: N. Grover and H. H. Thorp, J. Am. Chem. Soc. 113 (1991), 7030; X. Chen, S. E. Rokita, and C. J. Burrows, J. Am. Chem. Soc. 113 (1991), 5884.
    28. H. Y. Mei and J. K. Barton, J. Am. Chem. Soc. 108 (1986), 7414.
    29. H. Y. Mei and J. K. Barton, Proc. Natl. Acad. Sci. USA 85 (1988), 1339.
    30. A. M. Pyle, E. C. Long, and J. K. Barton, J. Am. Chem. Soc. 111 (1989), 4520.
    31. A. Sitlani et al., J. Am. Chem. Soc. 114 (1992), 2303.
    32. M. D. Purugganan et al., Science 241 (1988), 1645.
    33. L. A. Basile and J. K. Barton, Metal Ions Biol. Syst., 25 (1989), 31; J. K. Barton, in Frontiers of Chemistry: Biotechnology, Chem. Abstr. Serv., 5 (1989).
    34. D. R. Jones, L. F. Lindoy, and A. M. Sargeson, J. Am. Chem. Soc. 106 (1984), 7807.
    35. S. H. Gellman, R. Petter, and R. Breslow, J. Am. Chem. Soc. 108 (1986), 2388; J. Chin and X. Zhou, J. Am. Chem. Soc. 110 (1988), 223; J. R. Morrow and W. C. Trogler, Inorg. Chem. 27 (1988), 3387.
    36. L. A. Basile, A. L. Raphael, and J. K. Barton, J. Am. Chem. Soc. 109 (1987), 7550.
    37. G. L. Eichhorn and Y. A. Shin, J. Am. Chem. Soc. 90 (1968), 7322.
    38. R. S. Brown, J. C. Dewan, and A. Klug, Biochemistry 24 (1985), 4785.
    39. L. Behlen et al., Biochemistry 29 (1990), 2515.
    40. J. K. Barton, Science 233 (1986), 727.
    41. J. K. Barton et al., J. Am. Chem. Soc. 108 (1986), 2081.
    42. A. M. Pyle et al., J. Am. Chem. Soc. 111 (1989), 3051.
    43. C. V. Kumar, J. K. Barton, and N. J. Turro, J. Am. Chem. Soc. 107 (1985), 5518.
    44. S. J. Lippard et al., Science 194 (1976), 726.
    45. J. K. Barton, J. J. Dannenberg, and A. L. Raphael, J. Am. Chem. Soc. 104 (1982), 4967.
    46. J. K. Barton, A. T. Danishefsky, and J. M. Goldberg, J. Am. Chem. Soc. 106 (1984), 2172.
    47. R. F. Pasternack, E. J. Gibbs, and J. J. Villafranca, Biochemistry 22 (1983), 2406; R. F. Pasternack and E. J. Gibbs in T. D. Tullius, ed., Metal-DNA Chemistry, ACS Symposium 402 (1989), 59.
    48. J. K. Barton and E. Lolis, J. Am. Chem. Soc. 107 (1985), 708.
    49. R. E. Mahnken et al., Photochem. Photobiol. 49 (1989), 519.
    50. J. P. Rehmann and J. K. Barton, Biochemistry 29 (1990), 1701.
    51. J. C. Caradonna et al., J. Am. Chem. Soc. 104 (1982), 5793.
    52. J. P. Rehmann and J. K. Barton, Biochemisty 29 (1990), 1710.
    53. A. Jack et al., J. Mol. Biol. 111 (1977), 315.
    54. M. T. Carter and A. J. Bard, J. Am. Chem. Soc. 109 (1987), 7528.
    55. J. K. Barton and A. L. Raphael, J. Am. Chem. Soc. 106 (1984), 2466.
    56. M. B. Fleisher et al., Inorg. Chem. 25 (1986), 3549.
    57. M. W. van Dyke, R. P. Hertzberg, and P. B. Dervan, Proc. Natl. Acad. Sci. USA 79 (1982), 5470; M. W. van Dyke and P. B. Dervan, Nucleic Acids Res. 11 (1983), 5555.
    58. J. K. Barton et al., Proc. Natl. Acad. Sci. USA 81 (1984), 1961; A. E. Friedman et al., Nucleic Acids. Res. 19 (1991), 2595.
    59. A. E. Friedman et al., J. Am. Chem. Soc. 112 (1990), 4960; R. Hartshorn and J. K. Barton, J. Am. Chem. Soc. 114 (1992), 5919.
    60. W. deHorrocks and S. Klakamp, Biopolymers 30 (1990), 33.
    61. R. Tamilarasan, S. Ropertz, and D. R. McMillin, Inorg. Chem. 27 (1988), 4082.
    62. D. J. Galas and A. Schmitz, Nucleic Acids Res. 5 (1978), 3157.
    63. T. D. Tullius et al., Methods in Enzym. 155 (1987), 537.
    64. R. Law et al., Proc. Natl. Acad. Sci. USA 84 (1987), 9160; C. L. Peterson and K. L. Calane, Mol. Cell Biol. 7 (1987), 4194.
    65. J. C. Dabrowiak, B. Ward, and J. Goodisman, Biochemistry 28 (1989), 3314.
    66. P. E. Nielsen, C. Jeppesen, and O. Buchardt, FEBS Lett. 235 (1988), 122; C. Jeppesen and P. E. Nielsen, Nucleic Acids Res. 17 (1989), 4947.
    67. K. Uchida et al., Nucleic Acids Res. 17 (1989), 10259.
    68. A. M. Burkhoff and T. D. Tullius, Cell 48 (1987), 935; A. M. Burkhoff and T. D. Tullius, Nature 331 (1988), 455.
    69. B. H. Johnston and A. Rich, Cell 42 (1985), 713; E. Palacek, E. Rasovka, and P. Boublikova, Biochem. Biophys. Res. Comm. 150 (1988), 731.
    70. J. K. Barton and A. L. Raphael, Proc. Natl. Acad. Sci. USA 82 (1985), 6460.
    71. B. C. Muller, A. L. Raphael, and J. K. Barton, Proc. Natl. Acad. Sci. USA 84 (1987), 1764; I. Lee and J. K. Barton, Biochemistry 32 (1993), 6121.
    72. M. R. Kirshenbaum, R. Tribolet, and J. K. Barton, Nucleic Acids Res. 16 (1988), 7948.
    73. A. M. Pyle, T. Morii, and J. K. Barton, J. Am. Chem. Soc. 112 (1990), 9432.
    74. J. M. Kean, S. A. White, and D. E. Draper, Biochemistry 24 (1985), 5062.
    75. G. J. Murakawa et al., Nucleic Acids Res. 17 (1989), 5361
    76. C. S. Chow and J. K. Barton, J. Am. Chem. Soc. 112 (1990), 2839; C. S. Chow et al., Biochemistry 31 (1992), 972.
    77. H. E. Moser and P. B. Dervan, Science 238 (1987), 645.
    78. C. B. Chen and D. S. Sigman, Science 237 (1987), 1197.
    79. J. P. Sluka et al., Science 238 (1987), 1129.
    80. D. P. Mack, B. L. Iverson, and P. B. Dervan, J. Am. Chem. Soc. 110 (1988), 7572.
    81. J. S. Heras et al., J. Biol. Chem. 258 (1983), 14120.
    82. J. Miller, A. D. McLachlan, and A. Klug, EMBO 4 (1985), 1609.
    83. J. M. Berg, Science 232 (1986), 485.
    84. A. Klug and D. Rhodes, Trends Biochem. Sci. 12 (1987), 464; R. M. Evans and S. M. Hollenberg, Cell 52 (1988), 1.
    85. J. M. Berg, Proc. Natl. Acad. Sci. USA 85 (1988), 99.
    86. M. S. Lee et al., Science 245 (1989), 635; G. Parraga et al., Science 241 (1988), 1489.
    87. N. P. Pavletich and C. O. Pabo, Science 252 (1991), 809.
    88. (a) T. Pan and J. E. Coleman, Proc. Natl. Acad. Sci. USA 86 (1989), 3145; (b) R. Marmorstein et al., Nature 356 (1992), 408.
    89. B. F. Luisi et al., Nature 352 (1991), 497.
    90. (a) T. V. O'Halloran, Metal Ions Biol. Syst. 25 (1989), 105; (b) C. T. Walsh et al., FASEB 2 (1988), 124; T. V. O'Halloran and C. T. Walsh, Science 235 (1987), 211.
    91. J. D. HeImann, B. T. Ballard, and C. T. Walsh, Science 248 (1990), 946.
    92. J. E. Penner-Hahn et al., Physica B 158 (1989), 117.
    93. J. H. Griffin and P. B. Dervan, J. Am. Chem. Soc. 109 (1987), 6840.
    94. A. Bagg and J. B. Neilands, Microbiol. Rev. 51 (1987), 509.
    95. P. Furst et al., Cell 55 (1988), 705; C. Buchman et al., Mol. Cell Biol. 9 (1989).
    96. J. Stubbe and J. W. Kozarich, Chem. Rev. 87 (1987), 1107.
    97. E. A. Sausville, J. Peisach, and S. B. Horwitz, Biochem. Biophys. Res. Comm. 73 (1976), 814.
    98. Y. Iitaka et al., J. Antibiot. 31 (1978), 1070.
    99. S. M. Hecht, Acc. Chem. Res. 19 (1986), 383.
    100. C. W. Wu, F. Y. Wu, and D. C. Speckhard, Biochemistry 16 (1977), 5449.
    101. D. P. Giedroc and J. E. Coleman, Biochemistry 25 (1986), 4946.
    102. J. E. Coleman and D. P. Giedroc, Metal Ions Biol. Syst. 25 (1989), 171.
    103. A. S. Mildvan and E. H. Serpersu, Metal Ions Biol. Syst. 25 (1989), 309.
    104. D. Suck and C. Oefner, Nature 321 (1986), 620.
    105. J. E. Coleman, Metal Ions in Biol. 5 (1983), 219.
    106. H. Asahara et al., Biochemistry 28 (1989), 4444.
    107. I am grateful to my students and coworkers for their scientific contributions to some of the work described in this chapter and for their critical review of the manuscript. I also thank in particular Dr. Sheila David for preparation of the figures.

    Contributors and Attributions

    • Jacqueline K. Barton (California Institute of Technology, Division of Chemistry and Chemical Engineering)
    • Was this article helpful?