Skip to main content
Chemistry LibreTexts

7: Ferrodoxins, Hydrogenases, and Nitrogenases - Metal-Sulfide Proteins

  • Page ID
    59626
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Transition-metal/sulfide sites, especially those containing iron, are present in all forms of life and are found at the active centers of a wide variety of redox and catalytic proteins. These proteins include simple soluble electron-transfer agents (the ferredoxins), membrane-bound components of electron-transfer chains, and some of the most complex metalloenzymes, such as nitrogenase, hydrogenase, and xanthine oxidase. In this chapter we first review the chemistry of the Fe-S sites that occur in relatively simple rubredoxins and ferredoxins, and make note of the ubiquity of these sites in other metalloenzymes. We use these relatively simple systems to show the usefulness of spectroscopy and model-system studies for deducing bioinorganic structure and reactivity. We then direct our attention to the hydrogenase and nitrogenase enzyme systems, both of which use transition-metalsulfur clusters to activate and evolve molecular hydrogen.

    III. Report on the Nitrogenase Crystal Structure378-381

    IV. References

    1. F. Armstrong, in A. G. Sykes, ed., Advances in Inorganic and Bioinorganic Mechanisms, Vol. I, Academic Press, 1982.
    2. H. Beinert and S. P. J. Albracht, Biochim. Biophys. Acta 683 (1982), 245.
    3. A. V. Xavier, J. J. G. Moura, and I. Moura, in J. B. Goodenough et al., eds., Structure and Bonding, Springer-Verlag, 43 (1981), 187-213.
    4. D. C. Yoch and R. P. Carithers, Microbiol. Rev. 43 (1979), 384.
    5. H. B. Dunford et aI., eds., The Biological Chemistry of Iron: A Look at the Metabolism of Iron and Its Subsequent Uses in Living Organisms, Reidel, 1981.
    6. R. K. Thauer and P. Schönheit, in Reference 8, p. 329.
    7. A. Bezkorovainy, Biochemistry of Nonheme Iron, Plenum, 1980, pp. 343-393.
    8. T. G. Spiro, ed., Iron-Sulfur Proteins, Wiley-Interscience, 1985.
    9. W. Lovenberg, ed., Iron-Sulfur Proteins, Vol. I, Academic Press, 1973.
    10. Reference 9, Vol. II, Academic Press, 1973.
    11. Reference 10, Vol. III, Academic Press, 1977.
    12. Nomenclature, Eur. J. Biochem. 93 (1979), 427.
    13. Nomenclature, Biochim. Biophys. Acta 549 (1979), 101.
    14. C. F. Yocum, J. N. Sadow, and A. San Pietro, in Reference 9, p. 112.
    15. B. B. Buchanan, in Reference 9, p. 129.
    16. T. P. Singer and R. R. Ramsay, in A. N. Martonosi, ed., The Enzymes of Biological Membranes, Plenum, 1985, pp. 301-332.
    17. T. Yagi, H. Inokuchi, and K. Kimura, Acc. Chem. Res. 16 (1983), 2; Y. Higuchi et al., J. Mol. Biol. 172 (1984), 109.
    18. R. Lemberg and J. Barrett, Cytochromes, Academic Press, 1973.
    19. H. Beinert, in Reference 9, p. 1.
    20. K. K. Rao and D. O. Hall, in G. V. Leigh, ed., Evolution of Metalloenzymes, Metalloproteins, and Related Materials, 1977, p. 39.
    21. D. O. Hall, R. Cammack, and K. K. Rao, Nature 233 (1977), 136.
    22. T. Ohnishi and J. C. Salerno, in Reference 8, p. 285.
    23. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, 1980.
    24. D. E. McRee et al., J. Biol. Chem. 261 (1986), 10277.
    25. S. J. N. Burgmayer and E. I. Stiefel, J. Chem. Educ. 62 (1985), 943.
    26. W. Lovenberg and B. E. Sobel, Proc. Natl. Acad. Sci. USA 54 (1965), 193.
    27. E. T. Lode and M. J. Coon, in Reference 9, pp. 173-191.
    28. I. C. Gunsalus and J. D. Lipscomb, in Reference 11, p. 151.
    29. R. W. Estabrook et al., in Reference 9.
    30. I. Moura et al., Biochem. Biophys. Res. Commun. 75 (1977), 1037.
    31. I. Moura et al., J. Biol. Chem. 255 (1980), 2493. a) J. LeGall et al., Biochemistry 27 (1988), 1636.
    32. K. D. Watenpaugh, L. C. Sieker, and L. H. Jensen, J. Mol. Biol. 138 (1980), 615.
    33. E. T. Adman et al., J. Mol. Biol. 112 (1977), 113. a) C. D. Stout, in Reference 8, p. 97.
    34. K. D. Watenpaugh et al., Acta Cryst. B29 (1973), 943.
    35. R. G. Shulman et al., Proc. Natl. Acad. Sci. USA 72 (1975), 4003.
    36. R. G. Shulman et al., J. Mol. Biol. 124 (1978), 305.
    37. W. D. Phillips et al., Nature 227 (1970), 574.
    38. J. C. Rivoal et aI., Biochim. Biophys. Acta 493 (1977), 122.
    39. D. E. Bennett and M. K. Johnson, Biochim. Biophys. Acta 911 (1987), 71. a) M. S. Gebhard et al.,J. Am. Chem. Soc. 112 (1990), 2217. b) K. D. Butcher, M. S. Gebhard, and E. I. Solomon, Inorg. Chem. 29 (1990), 2067.
    40. M. C. W. Evans, in Reference 8, p. 249.
    41. W. A. Eaton and W. J. Lovenberg, J. Am. Chem. Soc. 92 (1970), 7195.
    42. M. K. Johnson, A. E. Robinson, and A. J. Thomson, in Reference 8, p. 367.
    43. P. J. Stephens et aI., Proc. Natl. Acad. Sci. USA 75 (1978), 5273.
    44. J. Peisach et al., J. Biol. Chem. 246 (1971), 5877.
    45. P. M. Champion and A. J. Siever, J. Chem. Phys. 66 (1977), 1819; D. Coucouvanis et al., J. Am. Chem Soc. 101 (1979), 3392.
    46. R. Cammack, D. S. Patil, and V. M. Fernandez, Biochem. Soc. Trans. 13 (1985), 572.
    47. B. L. Trumpower, Biochim. Biophys. Acta 639 (1981), 129.
    48. H. Beinert, Biochem. Soc. Trans. 13 (1985), 542.
    49. G. Palmer, Biochem. Soc. Trans. 13 (1985), 548.
    50. R. Malkin and A. J. Bearden, Biochim. Biophys. Acta 505 (1978), 147.
    51. C. E. Johnson, J. Inorg. Biochem. 28 (1986), 207.
    52. E. Münck and T. A. Kent, Hyperfine Interactions 27 (1986), 161.
    53. K. K. Rao et al., Biochem. J. 129 (1972), 1063.
    54. I. Bertini and C. Luchinat, eds., NMR of Paramagnetic Molecules in Biological Systems, Benjamin/ Cummings, 1986.
    55. G. N. La Mar, W. D. Horrocks, Jr., and R. H. Holm, NMR of Paramagnetic Molecules, Academic Press, 1973.
    56. M. T. Werth et al., J. Am. Chem. Soc. 109 (1987), 273.
    57. T. G. Spiro et al., in Reference 8, p. 407. a) T. V. Long and T. M. Loehr, J. Am. Chem. Soc. 92 (1970), 6384.
    58. G. Christou, B. Ridge, and H. N. Rydon, J. Chem. Soc. Chem. Commun. (1979), 20.
    59. S. W. May and J.-Y. Kuo, Biochemistry 17 (1978), 3333.
    60. S. W. May et al., Biochemistry 23 (1984), 2187.
    61. P. Saint-Martin et al., Proc. Natl. Acad. Sci. USA 85 (1988), 9378.
    62. R. W. Lane et al., Proc. Natl. Acad. Sci. USA 72 (1975), 2868.
    63. R. W. Lane et al., J. Am. Chem. Soc. 99 (1977), 84.
    64. D. G. Holah and D. Coucouvanis, J. Am. Chem. Soc. 97 (1975), 6917.
    65. D. Coucouvanis et al., J. Am. Chem. Soc. 93 (1976), 5721.
    66. M. Millar et al., lnorg. Chem. 21 (1982), 4105.
    67. S. A. Koch and L. E. Madia, J. Am. Chem. Soc. 105 (1983), 5944.
    68. M. Millar, S. A. Koch, and R. Fikar, lnorg. Chim. Acta 88 (1984), L15.
    69. J. C. Deaton et al., J. Am. Chem. Soc. 110 (1988), 6241.
    70. D. B. Knaff, Trends Biochem. Sci. 13 (1988), 461. a) T. Tsukihara et al., J. Biochem. 90 (1981), 1763.
    71. D. R. Ort and N. E. Good, Trends Biochem. Sci. 13 (1988), 467.
    72. V. Massey, in Reference 9, p. 301.
    73. M. K. Johnson et al., J. Biol. Chem. 260 (1985), 7368.
    74. J. C. Salerno et al., J. Biol. Chem. 254 (1979), 4828.
    75. T. P. Singer, M. Gutman, and V. Massey, in Reference 9, p. 225.
    76. H. Twilfer, F.-H. Bernhardt, and K. Gersonde, Eur. J. Biochem. 119 (1981), 595.
    77. L. Petersson, R. Cammack, and K. Krishna Rao, Biochim. Biophys. Acta 622 (1980), 18.
    78. B.-K. Teo and R. G. Shulman, in Reference 8, p. 343.
    79. T. Tsukihara et al., in K. Kimura, ed., Molecular Evolution, Protein Polymorphism and the Neutral Theory, Japan Scientific Societies Press and Springer-Verlag, 1982, p. 299.
    80. T. Tsukihara et al., BioSystems 15 (1982), 243.
    81. D. Petering and G. Palmer, Arch. Biochem. Biophys. 141 (1970), 456.
    82. J. F. Gibson et aI., Proc. Natl. Acad. Sci. USA 56 (1966), 987.
    83. W. A. Eaton et al., Proc. Natl. Acad. Soc. USA 68 (1971), 3015. a) L. B. Dugad et al., Biochemistry 29 (1990), 2663.
    84. J. Rawlings, O. Siiman, and H. B. Gray, Proc. Natl. Acad. Sci. USA 71 (1974), 125.
    85. I. Salmeen and G. Palmer, Arch. Biochem. Biophys. 150 (1972), 767.
    86. J. J. Mayerle et al., Proc. Natl. Acad. Sci. USA 70 (1973), 2429.
    87. J. L. Markley et al., Science 240 (1988), 908. a) L. Banci, I. Bertini, and C. Luchinat, Structure and Bonding 72 (1990), 113.
    88. V. K. Yachandra et al., J. Am. Chem. Soc. 105 (1983), 6462.
    89. S. Hwa, R. S. Czernuszewicz, and T. G. Spiro, J. Am. Chem. Soc. 111 (1989), 3496.
    90. S. Hwa et al., J. Am. Chem. Soc. 111 (1989), 3505.
    91. J. R. Rieske, D. H. MacLennan, and R. Coleman, Biochem. Biophys. Res. Commun. 15 (1964), 338.
    92. W. D. Bonner, Jr., and R. C. Prince, FEBS Lett. 177 (1984), 47.
    93. J. F. Cline et al., J. Biol. Chem. 260 (1985), 3251.
    94. H.-T. Tsang et al., Biochemistry 28 (1989), 7233.
    95. R. C. Prince, S. J. G. Linkletter, and P. L. Dutton, Biochem. Biophys. Acta 635 (1981), 132.
    96. J. G. Reynolds and R. H. Holm, lnorg. Chem. 19 (1980), 3257; 20 (1981), 1873. a) J. J. Mayerle et al., J. Am. Chem. Soc. 97 (1977), 1032. b) Y. Do, E. D. Simhon, and R. H. Holm, lnorg. Chem. 22 (1983), 3809. c) S. Han, R. Czernuszewicz, and T. G. Spiro, lnorg. Chem. 25 (1986), 2276. d) H. Strasdeit, B. Krebs, and G. Henkel, lnorg. Chim. Acta 89 (1989), LII.
    97. P. K. Mascharak et al., J. Am. Chem. Soc. 103 (1981), 6110.
    98. P. Beardwood et al., J. Chem. Soc. Dalton Trans. (1982), 2015.
    99. D. Coucouvanis et al., J. Am. Chem. Soc. 106 (1984), 6081.
    100. P. Beardwood and J. F. Gibson, J. Chem. Soc. Chem. Commun. 102 (1985), 490 and 1345.
    101. L. C. Sieker, E. Adman, and L. H. Jensen, Nature 235 (1971), 40.
    102. J. M. Berg, K. O. Hodgson, and R. H. Holm, J. Am. Chem. Soc. 101 (1970), 4586.
    103. P. J. Stephens et al., Proc. Natl. Acad. Sci. USA 82 (1985), 5661.
    104. M. W. W. Adams and L. E. Mortenson, in Reference 235a.
    105. L. W. Lim et al., J. Biol. Chem. 261 (1986), 15 and 140.
    106. J. C. Salerno et al., Biochem. Biophys. Res. Commun. 73 (1976), 833.
    107. G. Strahs and J. Kraut, J. Mol. Biol. 35 (1968), 503.
    108. C. W. Carter, Jr., et al., Proc. Natl. Acad. Sci. USA 69 (1972), 3526.
    109. C. W. Carter, Jr., et al., J. Biol. Chem. 249 (1974), 4212.
    110. K. Fukuyama, J. Mol. Biol. 199 (1988), 183. a) K. Fukuyama et al., J. Mol. Biol. 210 (1989), 383.
    111. G. H. Stout et al., Proc. Natl. Acad. Sci. USA 85 (1988), 1020.
    112. C. D. Stout, J. Biol. Chem. 263 (1988), 9256.
    113. A. H. Robbins and C. D. Stout, Proc. Natl. Acad. Sci. USA 86 (1989), 3639.
    114. E. T. Adman, L. C. Sieker, and L. H. Jensen, J. Biol. Chem. 248 (1973), 3987.
    115. R. C. Prince and M. W. W. Adams, J. Biol. Chem. 262 (1987), 5125.
    116. L. E. Mortenson, R. C. Valentine, and J. E. Carnahan, Biochem. Biophys. Res. Commun. 7 (1962), 448.
    117. W. Lovenberg, B. B. Buchanan, and J. C. Rabinowitz, J. Biol. Chem. 254 (1979), 4499.
    118. R. Mathews et al., J. Biol. Chem. 249 (1974), 4326.
    119. A. J. Thomson, in P. M. Harrison, ed., Metalloproteins, Part I: Metal Proteins with Redox Roles, Verlag Chemie, 1985, pp. 79-120.
    120. R. Cammack, Biochem. Biophys. Res. Commun. 54 (1973), 548.
    121. M. J. Carney et al., Inorg. Chem. 27 (1988), 346.
    122. M. J. Carney et al., J. Am. Chem. Soc. 110 (1988), 6084.
    123. L. Noodleman, D. A. Case, and A. Aizman, J. Am. Chem. Soc. 110 (1988), 1001.
    124. L. Noodleman, Inorg. Chem. 27 (1988), 3677.
    125. J.-M. Moulis, J. Meyer, and M. Lutz, Biochemistry 23 (1984), 6605. a) W. D. Phillips and M. Poe, in Reference 10, p. 255. b) E. L. Packer et al., J. Biol. Chem. 252 (1977), 2245. c) J. Bertini et al., Inorg. Chem. 29 (1990), 1874. d) B.-K. Teo et al., J. Am. Chem. Soc. 101 (1979), 5624.
    126. T. Herskovitz et al., Proc. Natl. Acad. Sci. USA 69 (1972), 2437.
    127. B. A. Averill et al., J. Am. Chem. Soc. 95 (1973), 3523.
    128. J. M. Berg and R. H. Holm, in Reference 8, p. I.
    129. G. B. Wang, M. A. Bobrick, and R. H. Holm, Inorg. Chem. 17 (1978), 578.
    130. D. Coucouvanis et al., J. Am. Chem. Soc. 104 (1982), 1874.
    131. A. Müller and N. Schladerbeck, Chimia 39 (1985), 23.
    132. A. Müller, N. Schladerbeck, and H. Bagge, Chimia 39 (1985), 24.
    133. S. Rutchik, S. Kim, and M. A. Walters, Inorg. Chem. 27 (1988), 1513.
    134. W. E. Cleland et al., J. Am. Chem. Soc. 105 (1983), 6021.
    135. M. G. Kanatzidis et al., J. Am. Chem. Soc. 106 (1984), 4500.
    136. M. G. Kanatzidis et al., Inorg. Chem. 22 (1983), 179.
    137. R. E. Johnson et al., J. Am. Chem. Soc. 105 (1983), 7280.
    138. M. G. Kanatzidis et al., J. Am. Chem. Soc. 107 (1985), 4925. a) K. S. Hagen, J. G. Reynolds, and R. H. Holm, J. Am. Chem. Soc. 103 (1981), 4054. b) G. Christou and C. D. Gamer, J. Chem. Soc. Dalton Trans. (1979), 1093. c) M. J. Carney et al., Inorg. Chem. 27 (1988), 346. d) P. Barbaro et al., J. Am. Chem. Soc. 112 (1990), 7238.
    139. E. J. Laskowski et al., J. Am. Chem. Soc. 100 (1978), 5322.
    140. E.1. Laskowski et al., J. Am. Chem. Soc. 101 (1979), 6562.
    141. T. O'Sullivan and M. Millar, J. Am. Chem. Soc. 107 (1985), 4096.
    142. M. Millar, private communication.
    143. T. D. P. Stack and R. H. Holm, J. Am. Chem. Soc. 110 (1989), 2484. a) T. D. P. Stack, M. J. Carney, and R. H. Holm, J. Am. Chem. Soc. 111 (1989), 1670. b) S. Ciurli et al., J. Am. Chem. Soc. 112 (1990), 2654. c) P. R. Challen et al., J. Am. Chem. Soc. 112 (1990), 2455.
    144. L. Que, Jr., R. H. Holm, and L. E. Mortenson, J. Am. Chem. Soc. 97 (1975), 463.
    145. N. R. Bastian et al., in Reference 10, p. 227.
    146. H. Beinert and A. J. Thomson, Arch. Biochem. Biophys. 222 (1983), 333.
    147. M. H. Emptage et al., J. Biol. Chem. 255 (1980), 1793.
    148. W. W. Sweeney, J. C. Rabinowitz, and D. C. Yoch, J. Biol. Chem. 250 (1985), 7842.
    149. B. A. Averill, J. R. Bal, and W. H. Orme-Johnson, J. Am. Chem. Soc. 100 (1978), 3034.
    150. C. D. Stout, Nature 279 (1979), 83.
    151. D. Ghosh et al., J. Biol. Chem. 256 (1981), 4185.
    152. D. Ghosh et al., J. Mol. Biol. 158 (1982), 73.
    153. M. K. Johnson et al., J. Am. Chem. Soc. 105 (1983), 6671.
    154. H. Beinert and A. J. Thomson, Arch. Biochem. Biophys. 222 (1983), 333.
    155. M. R. Antonio et al., J. Biol. Chem. 257 (1982), 6646.
    156. E. Miinck, in Reference 8, p. 147.
    157. C. E. Johnson, J. Inorg. Biochem. 207 (1986), 28.
    158. B. H. Huynh et al., J. Biol. Chem. 255 (1980), 3242.
    159. J. J. G. Moura et al., J. Biol. Chem. 257 (1982), 6259. a) H. Beinert and M. C. Kennedy, Eur. J. Biochem. 186 (1989), 1865.
    160. C. R. Kissinger et al., J. Am. Chem. Soc. 110 (1988), 8721. a) S. Ciurli and R. H. Holm, Inorg. Chem. 28 (1989), 1685.
    161. T. A. Kent et al., J. Biol. Chem. 260 (1985), 6871.
    162. A. H. Robbins and C. D. Stout, J. Biol. Chem. 260 (1985), 2328.
    163. M. K. Johnson et al., J. Biol. Chem. 258 (1983), 12771.
    164. M. C. Kennedy et al., J. Biol. Chem. 258 (1983), 11098.
    165. J. TeIser et al., J. Biol. Chem. 261 (1986), 4840.
    166. D. H. Flint, M. H. Emptage, and J. R. Guest, J. Inorg. Biochem. 36 (1989), 306. a) R. L. Switzer, BioFactors 2 (1989), 77.
    167. H. Beinert et al., Proc. Natl. Acad. Sci. USA 80 (1983), 393.
    168. M. K. Johnson et al., J. Biol. Chem. 256 (1981), 9806.
    169. T. R. Halbert et al., J. Am. Chem. Soc. 106 (1984),1849.
    170. G. N. George and S. J. George, Trends Biochem. Sci. 13 (1988), 369. a) I. Moura et al., J. Am. Chem. Soc. 108 (1986), 349. b) K. K. Surerus et al., J. Am. Chem. Soc. 109 (1987), 3805. c) R. C. Conover et al., J. Am. Chem. Soc. 112 (1990), 4562. d) J. K. Money, J. C. Huffman, and G. Christou, Inorg. Chem. 27 (1988), 507.
    171. B. H. Huynh et al., Proc. Natl. Acad. Sci. USA 81 (1984), 3728.
    172. T. R. Hawkes and B. E. Smith, Biochem. J. 223 (1984), 783.
    173. M. A. Whitener et al., J. Am. Chem. Soc. 108 (1986), 5607.
    174. K. S. Hagen and R. H. Holm, J. Am. Chem. Soc. 104 (1982), 5496.
    175. K. S. Hagen, A. D. Watson, and R. H. Holm, J. Am. Chem. Soc. 105 (1983), 3905. a) J.-J. Girard et al., J. Am. Chem. Soc. 106 (1984), 5941.
    176. M. C. Kennedy et al., J. Biol. Chem. 259 (1984), 14463. a) H. Strasdeit, B. Krebs, and G. Henkel, Inorg. Chem. 23 (1983), 1816.
    177. M. G. Kanatzidis et al., J. Chem. Soc. Chem. Commun. (1984), 356.
    178. M. G. Kanatzidis, A. Salifoglou, and D. Coucouvanis, J. Am. Chem. Soc. 107 (1985), 3358; Inorg. Chem. 25 (1986), 2460.
    179. S. Pohl and W. Saak, Angew. Chem. Int. Ed. Engl. 23 (1984), 907. a) S. A. AI-Ahmand et al., Inorg. Chem. 29 (1990), 927.
    180. F. Cecconi, C. A. Ghilardi, and S. Midolini, J. Chem. Soc. Chem. Commun. (1981), 640.
    181. A. Agresti et al., Inorg. Chem. 24 (1985), 689.
    182. K. S. Hagen, J. M. Berg, and R. H. Holm, Inorg. Chim. Acta 45 (1980), L17. a) B. S. Snyder and R. H. Holm, Inorg. Chem. 27 (1988), 1816. b) B. S. Synder et al., Inorg. Chem. 27 (1988), 595. c) M. S. Reynolds and R. H. Holm, Inorg. Chem. 27 (1988), 4494. d) B. S. Snyder and R. H. Holm, Inorg. Chem. 29 (1990), 274.
    183. I. Noda, B. S. Snyder, and R. H. Holm, Inorg. Chem. 25 (1986), 3851. a) J.-F. You, B. S. Snyder, and R. H. Holm, J. Am. Chem. Soc. 110 (1988), 6589. b) J.-F. You et al., J. Am. Chem. Soc. 112 (1990), 1067. c) W. R. Hagen, A. J. Pierik, and C. Veeger, J. Chem. Soc., Faraday Trans. I 85 (1989), 4083.
    184. E. I. Stiefel et al., Adv. Chem. Ser. 162 (1977), 353. a) I. Moura and J. J. G. Moura, in Reference 5, p. 179. b) J. R. Lancaster, Jr., ed., The Bioinorganic Chemistry of Nickel, VCH Publishers, 1988. c) H. J. Grande et al., in Reference 5, p. 193. d M. W. W. Adams, L. E. Mortenson, and J.-S. Chen, Biochim. Biophys. Acta 594 (1981), 105. e) J. LeGall and H. D. Peck, Jr., in Reference 5, p. 207. f) J. LeGall et al., in Reference 8, p. 177. g) S. P. Ballantine and D. H. Boxer, Eur. J. Biochem. 156 (1986), 276. h) W. H. Onne-Johnson and N. R. Onne-Johnson, in Reference 8, p. 67.
    185. B. Bowien and H. G. Schlegel, Annu. Rev. Microbiol. 35 (1981), 401.
    186. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109 (1987), 5541.
    187. T. C. Eisenschmid et al., J. Am. Chem. Soc. 109 (1987), 8089.
    188. M. W. W. Adams et al., Biochimie 68 (1986), 35.
    189. R. Cammack, V. M. Fernandez, and K. Schneider, in Reference 184b, p. 167. 189a. M. W. W. Adams, Biochem. Biophys. Acta 1020 (1990),115.
    190. H. J. Grande et al., Eur. J. Biochem. 136 (1983), 201.
    191. M. W. W. Adams and L. E. Mortenson, J. Biol. Chem. 259 (1984), 7045.
    192. S. W. Ragsdale and L. G. L. Ljungdahl, Arch. Microbial. 139 (1984), 361.
    193. C. R. Woese, Microbial. Rev. 81 (1987), 221.
    194. M. W. W. Adams, E. Eccleston, and J. B. Howard, Proc. Natl. Acad. Sci. USA 86 (1989), 4932.
    195. D. S. Patil et al., J. Am. Chem. Soc. 110 (1988), 8533.
    196. A. T. Kowal, M. W. W. Adams, and M. K. Johnson, J. Biol. Chem. 264 (1989), 4342.
    197. W. R. Hagen et al., FEBS Lett. 203 (1986), 59.
    198. I. C. Zambrano et al., J. Biol. Chem. 264 (1989), 20974.
    199. M. W. W. Adams, J. Biol. Chem. 262 (1987), 15054.
    200. T. V. Morgan, R. C. Prince, and L. E. Mortenson, FEBS Lett. 206 (1986), 4.
    201. W. R. Hagen et al., FEBS Lett. 201 (1986), 158.
    202. F. M. Rusnak et al., J. Biol. Chem. 262 (1987), 38.
    203. G. Wang et al., J. Biol. Chem. 259 (1984), 14328.
    204. J. Telser et al., J. Biol. Chem. 262 (1987), 6589.
    205. J. Telser et al., J. Biol. Chem. 261 (1986), 15536.
    206. H. Thomann, M. Bernardo, and M. W. W. Adams, J. Am. Chem. Soc. 113 (1991), 7044.
    207. A. J. Thomson et al., Biochem. J. 227 (1985), 333.
    208. K. A. Macor et al., J. Biol. Chem. 282 (1987), 9945.
    209. G. N. George et al., Biochem. J. 259 (1989), 597.
    210. R. Cammack, Adv. Inorg. Chem. 32 (1988), 297.
    211. J. J. G. Moura et al., in Reference 5, p. 191.
    212. J. R. Lancaster, FEBS Lett. 115 (1980), 285.
    213. M. Teixeira et al., J. Biol. Chem. 260 (1985), 8942.
    214. J. W. Van der Zwaan et al., FEBS Lett. 179 (1985), 271.
    215. M. K. Eidsness, R. J. Sullivan, and R. A. Scott, in Reference 184b, p. 73.
    216. M. K. Eidsness et al., Proc. Natl. Acad. Sci. USA 86 (1989), 147.
    217. P. A. Lindahl et al., J. Am. Chem. Soc. 106 (1984), 3062.
    218. R. A. Scott et al., J. Am. Chem. Soc. 106 (1984), 6864.
    219. S. P. J. Albracht et al., Biochim. Biophys. Acta 874 (1986), 116.
    220. A. Chapman et al., FEBS Lett. 242 (1988), 134.
    221. S. L. Tau et al., J. Am. Chem. Soc. 106 (1984), 3064.
    222. G. J. Kubas et al., J. Am. Chem. Soc. 106 (1984), 451.
    223. G. J. Kubas and R. R. Ryan, Polyhedron 5 (1986), 473.
    224. G. J. Kubas et al., J. Am. Chem. Soc. 108 (1986), 7000.
    225. M. Rakowski DuBois et al., J. Am. Chem. Soc. 102 (1980), 7456.
    226. C. Bianchini et al., Inorg. Chem. 25 (1986), 4617.
    227. W. Tremel et al., Inorg. Chem. 27 (1988), 3886.
    228. W. Tremel and G. Henkel, Inorg. Chem. 27 (1988), 3896.
    229. I. Dance, Polyhedron 5 (1986), 1037; P. J. Blower and J. R. Dilworth, Coord. Chem. Rev. 76 (1987), 121.
    230. C. L. Coyle and E. I. Stiefel, in Reference 184b, p. 1.
    231. M. Kumar et al., J. Am Chem. Soc. 111 (1989), 5974.
    232. M. Kumar et al., J. Am. Chem. Soc. 111 (1989), 8323.
    233. T. H. Blackburn, in W. E. Krumbein, ed., Microbial Geochemistry, Blackwell Scientific, 1983, p. 63.
    234. J. R. Postgate, Fundamentals of Nitrogen Fixation, Cambridge University Press, 1982.
    235. R. W. F. Hardy, Treatise on Dinitrogen Fixation, Wiley, 1979, Section I. a) T. G. Spiro, ed., Molybdenum Enzymes, Wiley-Interscience, 1985.
    236. W. J. Brill, NATO Adv. Sci. Inst., Ser. A 63 (1983), 231.
    237. R. Haselkorn, Annu. Rev. Microbial. 40 (1986), 525.
    238. A. C. Robinson, D. R. Dean, and B. K. Burgess, J. Biol. Chem. 262 (1987), 14327.
    239. P. J. Stephens, in Reference 235a, p. 117.
    240. A. H. Gibson and W. E. Newton, eds., Current Perspectives in Nitrogen Fixation, Australian Academy of Science, 1981.
    241. E. I. Stiefel, in W. E. Newton and C. Rodriquez-Barrucco, eds., in Recent Progress in Nitrogen Fixation, Academic Press, 1977, p. 69.
    242. C. Veeger and W. E. Newton, eds., Advances in Nitrogen Fixation Research, Nijhoff/Junk, 1984.
    243. H. J. Evans, P. J. Bottomley, and W. E. Newton, eds., Nitrogen Fixation Research Progress, Martinus Nijhoff, 1985. a) A. Braaksma et al., in Reference 5, p. 223. b) B. H. Huynh, E. Münck, and W. H. Orme-Johnson, in Reference 5, p. 241.
    244. E. I. Stiefel, in Reference 240, p. 55.
    245. R. V. Hageman and R. H. Burris, Proc. Natl. Acad. Sci. USA 75 (1978), 2699.
    246. V. Sundaresan and F. M. Ausubel, J. Biol. Chem. 256 (1981), 2808. a) R. P. Hausinger and J. B. Howard, J. Biol. Chem. 258 (1983), 13486. b) M. M. Georgiadis, P. Chakrabarti, and D. C. Rees, SSRL Annual Report (1989), p. 94.
    247. L. E. Mortenson, M. N. Walker, and G. A. Walker, in W. E. Newton and C. J. Nyman, eds., Proceedings of the First International Conference on Nitrogen Fixation, Washington State University Press (1976), p. 117.
    248. W. H. Orme-Johnson et al., in W. E. Newton, J. R. Postgate, and C. Rodriguez Barrucco, eds., Recent Developments in Nitrogen Fixation, Academic Press, 1977, p. 131.
    249. G. D. Watt and J. W. McDonald, Biochemistry 24 (1985), 7226.
    250. W. R. Hagen et al., FEBS Lett. 189 (1986), 250.
    251. L. Noodleman et al., J. Am. Chem. Soc. 107 (1985), 3418.
    252. G. D. Watt, Z.-C. Wang, and R. R. Knotts, Biochemistry 25 (1986),8156; J. Cordewener et al., Eur. J. Biochem. 148 (1985), 499.
    253. L. E. Mortenson and R. N. F. Thorneley, Annu. Rev. Biochem. 48 (1979), 387.
    254. A. V. Kulikov et al., Dokl. Akad. Nauk SSR 262 (1981), 1177.
    255. R. N. F. Thorneley and D. J. Lowe, in Reference 235, p. 221. a) F. A. Schultz, S. F. Gheller, and W. E. Newton, Proc. Int. Symp. Redox Mech. Interfacial Prop. Mol. Biol. Importance 3 (1988), 203.
    256. B. K. Burgess and W. E. Newton, in A. Müller and W. E. Newton, eds., Nitrogen Fixation: The Chemical-Biochemical-Genetic Interface, Plenum, 1983, p. 83.
    257. E. I. Stiefel and S. P. Cramer, in Reference 235, p. 88.
    258. V. Shah and W. J. Brill, Proc. Natl. Acad. Sci. USA 74 (1977), 3249.
    259. S. D. Conradson et al., J. Am. Chem. Soc. 109 (1987), 7507. a) P. A. McLean et al., Biochemistry 28 (1989), 9402. b) D. A. Wink et al., Biochemistry 28 (1989), 9407.
    260. M. A. Walters, S. K. Chapman, and W. H. Orme-Johnson, Polyhedron 5 (1986), 561.
    261. P. A. McLean and R. A. Dixon, Nature 292 (1981), 655.
    262. P. A. McLean and B. E. Smith, Biochem. J. 211 (1983), 589.
    263. T. R. Hawkes, P. A. McLean, and B. E. Smith, Biochem. J. 217 (1984), 317.
    264. T. R. Hoover et al., Biochemistry 27 (1988), 3647.
    265. T. R. Hoover et al., Biochemistry 28 (1989), 2768. a) J. Liang et al., Biochemistry 29 (1990), 8377. b) M. S. Madden et al., Proc. Natl. Acad. Sci. USA 87 (1990), 6517.
    266. A. C. Robinson, D. Dean, and B. K. Burgess, J. Biol. Chem. 262 (1989), 14327. a) A. C. Robinson et al., J. Biol. Chem. 264 (1989), 10088. b) D. J. Scott et al., Nature 343 (1990), 188. c) H. M. Kent et al., Biochem. J. 264 (1989), 257.
    267. W. R. Hagen et al., Eur. J. Biochem. 169 (1987), 457.
    268. P. A. McLean et al., J. Biol. Chem. 262 (1987), 12900.
    269. P. A. Lindahl et al., J. Biol. Chem. 263 (1988), 19442.
    270. G. D. Watt, A. Burns, and D. L. Tennent, Biochemistry 20 (1981), 7272; G. D. Watt and Z. C. Wang, Biochemistry 25 (1986), 5196.
    271. R. Zimmermann et al., Biochim. Biophys. Acta. 537 (1978), 185.
    272. D. M. Kurtz et al., Proc. Natl. Acad. Sci. USA 76 (1979), 4986.
    273. R. A. Venters et al., J. Am. Chem. Soc. 108 (1986), 3487. a) J. Bolin, in P. M. Gresshoff, L. E. Roth, G. Stacey, and W. E. Newton, eds., Nitrogen Fixation: Achievements and Objectives, Chapman and Hall, 1990, p. 111.
    274. B. M. Hoffman, J. E. Roberts, and W. H. Orme-Johnson, J. Am. Chern. Soc. 104 (1982), 860.
    275. A. E. True et al., J. Am. Chem. Soc. 110 (1988), 1935. a) A. E. True et al., J. Am. Chem. Soc. 112 (1990), 651.
    276. G. N. George et aI., Biochem. J. 262 (1989), 349.
    277. W. B. Mims and J. Peisach, in R. G. Shulman, ed., Biological Applications of Magnetic Resonance, Academic Press, 1980, p. 221.
    278. W. H. Orme-Johnson et al., in Reference 8, p. 79.
    279. H. Thomann et al., J. Am. Chem. Soc. 109 (1987), 7913.
    280. H. Thomann et al., Proc. Natl. Acad. Sci. USA, 88 (1991), 6620.
    281. B. H. Huynh, E. Munck, and W. H. Orme-Johnson, Biochim. Biophys. Acta 527 (1979), 192.
    282. B. H. Huynh et aI., Biochim. Biophys. Acta 623 (1980), 124.
    283. E. Münck et al., Biochim. Biophys. Acta 400 (1975), 32. a) W. E. Newton et al., Biochem. Biophys. Res. Commun. 162 (1989), 882.
    284. S. D. Conradson, B. K. Burgess, and R. H. Holm, J. Biol. Chem. 263 (1988), 13743.
    285. W. R. Dunham et aI., Eur. J. Biochem. 146 (1985), 497.
    286. S. P. Cramer et al., J. Am. Chem. Soc. 100 (1978), 3398.
    287. M. K. Eidsness et al., J. Am. Chem. Soc. 108 (1986), 2746.
    288. S. D. Conradson et aI., J. Am. Chem. Soc. 107 (1985), 7935; Reference 259.
    289. B. Hedman et al., J. Am. Chem. Soc. 110 (1988), 3798.
    290. M. R. Antonio et al., J. Am. Chem. Soc. 104 (1982), 4703.
    291. J. M. Arber et al., Biochem. J. 252 (1988), 421.
    292. M. S. Weininger and L. E. Mortenson, Proc. Natl. Acad. Sci. USA 79 (1982), 378.
    293. N. I. Sosfenov et al., Dokl. Akad. Nauk. SSSR 291 (1986), 1123.
    294. T. Yamane et al., J. Biol. Chem. 257 (1982), 1221.
    295. A. M. Flank et aI., J. Am. Chem. Soc. 108 (1986), 1049.
    296. J. F. Rubinson et aI., Biochemistry 24 (1985), 273.
    297. E. I. Stiefel, Proc. Natl. Acad. Sci. USA 70 (1973), 988.
    298. K. L. Hadfield and W. A. Bulen, Biochemistry 8 (1969), 5103.
    299. F. B. Simpson and R. Burris, Science 224 (1984), 1095.
    300. B. K. Burgess et al., Biochemistry 20 (1981), 5140.
    301. S. Wherland et aI., Biochemistry 20 (1981), 5132.
    302. J. H. Guth and R. H. Burris, Biochemistry 22 (1983), 5111.
    303. Z.-c. Wang and G. D. Watt, Proc. Natl. Acad. Sci. USA 81 (1984), 376.
    304. B. E. Smith et al., Phil. Trans. Roy. Soc. London B317 (1987), 131.
    305. R. N. F. Thorneley, R. R. Eady, and D. J. Lowe, Nature 272 (1978), 557.
    306. S. Wherland et al., Biochemistry 20 (1981), 5132.
    307. B. K. Burgess et al., Biochemistry 20 (1981), 5140.
    308. H. Bortels, Arch. Mikrobiol. 1 (1930), 333.
    309. R. C. Bray, Quart. Rev. Biophys. 21 (1988), 299.
    310. H. Bortels, Zentbl. Bakt. Parasiten Abt. II 95 (1935), 193.
    311. C. E. McKenna, J. R. Benemann, and T. G. Traylor, Biochem. Biophys. Res. Commun. 41 (1970), 1501.
    312. R. C. Burns, W. H. Fuchsman, and R. W. F. Hardy, Biochem. Biophys. Res. Commun. 42 (1971), 353.
    313. J. R. Benemann et al., Biochim. Biophys. Acta 264 (1972), 25.
    314. P. E. Bishop, D. M. L. Jarlenski, and D. R. Hetherington, Proc. Natl. Acad. Sci. USA 77 (1980), 7342.
    315. P. E. Bishop et al., Science 232 (1986), 92.
    316. B. J. Hales, D. J. Langosch, and E. E. Case, J. Biol. Chem. 261 (1986), 15301.
    317. B. J. Hales et al., Biochemistry 26 (1987), 1795.
    318. J. Morningstar et al., Biochemistry 26 (1987), 1795.
    319. R. L. Robson et al., Nature 322 (1986), 388.
    320. R. R. Eady et al., Biochem. J. 244 (1987), 197.
    321. M. J. Dilworth et al., Nature 327 (1987), 167.
    322. R. N. Pau, Trends Biochem. Res. 14 (1989), 186; P. E. Bishop and R. D. Joerger, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 (1990), 109.
    323. J. E. Morningstar and B. J. Hales, J. Am. Chem. Soc. 109 (1987), 6854.
    324. J. M. Arber et al., Nature 372 (1987), 325.
    325. G. N. George et al., J: Am. Chem. Soc. 110 (1988), 4057.
    326. R. R. Eady et al., Recueil des Travaus Chim. des Pays-Bas 106 (1987), 175.
    327. M. J. Carney et al., J. Am. Chem. Soc. 108 (1986), 3519.
    328. R. H. Holm, Chem. Soc. Rev. (1981), 455.
    329. G. Christou and C. D. Gamer, J. Chem. Soc. Dalton Trans. (1980), 2354.
    330. C. D. Gamer et al., Phil. Trans. Roy. Soc. Land. A308 (1982), 159. a). R. H. Holm and E. D. Simhon, in Reference 235a, p. 1.
    331. W. H. Armstrong, P. K. Mascharak, and R. H. Holm, Inorg. Chem. 21 (1982),1699.
    332. R. E. Palermo and R. H. Holm, J. Am. Chem. Soc. 105 (1983), 4310. a) D. Coucouvanis, E. D. Simhon, and N. C. Baenziger, J. Am. Chem. Soc. 102 (1980), 6644. b) G. D. Friesen et al., Inorg. Chem. 22 (1983), 2203. c) P. Stremple, N. C. Baenziger, and D. Coucouvanis, J. Am. Chem. Soc. 103 (1981), 4601. d) D. Coucouvanis et al., J. Am. Chem. Soc. 102 (1980), 1732. e) A. Müller et al., Inorg. Chim. Acta 148 (1988), 11. f) A. Müller et al., Angew. Chem. Int. Ed. Engl. 21 (1982), 860. g) D. Coucouvanis et al., Inorg. Chem. 27 (1988), 4066. h) P. A. Eldridge et al., J. Am. Chem. Soc. 110 (1988), 5573. i) K. S. Bose et al., J. Am. Chem. Soc. 111 (1989), 8953. j) J. A. Kovacs, J. K. Bashkin, and R. H. Holm, Polyhedron 6 (1987), 1445.
    333. R. D. Sanner et al., J. Am. Chem. Soc. 98 (1972), 8351. a) M. B. O'Regan et al., J. Am. Chem. Soc. 112 (1990), 4331.
    334. G. Pez, P. Apgar, and R. K. Crissey, J. Am. Chem. Soc. 104 (1982), 462.
    335. K. Jones et al., J. Am. Chem. Soc. 98 (1976), 74.
    336. G. J. Leigh, J. Mol. Catal. 47 (1988), 363.
    337. R. A. Henderson, G. J. Leigh, and C. J. Pickett, Adv. Inorg. Chem. Radiochem. 27 (1984), 198. a) M. Hidai and Y. Mizobe, in P. S. Braterman, ed., Reactions of Coordinated Ligands, Plenum, 2 (1989),53. b) T. Yoshida et al., J. Am. Chem. Soc. 110 (1988), 4872. c) T. Yoshida, T. Adachi, and T. Ueda, Pure Appl. Chem. 62 (1990), 1127.
    338. D. Sellmann et al., Angew. Chem. Int. Ed. Engl. 28 (1989), 1271.
    339. A. E. Shilov, in M. Gratzel, ed., Energy Resources through Chemistry and Catalysis, Academic Press, 1983, p. 533.
    340. W. E. Newton et al., Inorg. Chem. 19 (1980), 1997.
    341. T. R. Halbert, W.-H. Pan, and E. I. Stiefel, J. Am. Chem. Soc. 105 (1983), 5476.
    342. M. Rakowski DuBois et al., J. Am. Chem. Soc. 101 (1979), 5245.
    343. R. H. Crabtree, Inorg. Chim. Acta 125 (1986), 27.
    344. W. B. Mims and J. Peisach, in J. Berliner and J. Reuben, eds., Biological Magnetic Resonance, Plenum, 3 (1981), 213.
    345. T. Yamane et al., J. Biol. Chem. 257 (1982), 1221.
    346. D. C. Rees and J. B. Howard, J. Biol. Chem. 2587 (1983), 12733.
    347. R. B. Frankel et al., J. de Physique 37 (1976), C6.
    348. C. E. Johnson, J. Appl. Phys. 42 (1971), 1325.
    349. P. Middleton et al., Eur. J. Biochem. 88 (1978), 135.
    350. K. Tagawa and D. I. Amon, Biochim. Biophys. Acta 153 (1968), 602.
    351. G. Palmer, R. H. Sands, and L. E. Mortenson, Biochim. Biophys. Acta 23 (1966), 357.
    352. R. H. Sands and W. R. Dunham, Quart. Rev. Biophys. 4 (1975), 443.
    353. R. Cammack, in M. J. Allen and P. N. R. Usherwood, eds., Charge and Field Effects in Biosystems, Abacus Press, 1984, p. 41.
    354. J. Cardenas, L. E. Mortenson, and D. C. Yoch, Biochim. Biophys. Acta 434 (1976), 244.
    355. R. Cammack, M. J. Barber, and R. C. Bray, Biochem. J. 157 (1976), 469.
    356. R. C. Bray, in The Enzymes, 3d ed., 12 (1975), 299.
    357. J. A. Fee et al., J. Biol. Chem. 259 (1984), 124.
    358. R. N. Mullinger et al., Biochem. J. 151 (1975), 75.
    359. R. Cammack et al., Biochim. Biophys. Acta 490 (1977), 311.
    360. F. A. Armstrong et al., FEBS Lett. 234 (1988), 107.
    361. W. R. Hagen et al., Biochim. Biophys. Acta 828 (1985), 369.
    362. E. deGryse, N. Glandsdorff, and A. Piérard, Arch. Microbiol. 117 (1978), 189.
    363. V. M. Fernandez, E. C. Hatchikian, and R. Cammack, Biochim. Biophys. Acta 832 (1985), 69.
    364. V. Niviére, Biochem. Biophys. Res. Commun. 139 (1986), 658.
    365. M. Teixeira et al., Biochimie 68 (1986), 75.
    366. D. J. Lowe, B. E. Smith, and R. R. Eady, in N. S. Subba Rao, ed., Recent Advances in Biological Nitrogen Fixation, Arnold, 1980, p. 34.
    367. R. C. Bums, R. D. Holsten, and R. W. F. Hardy, Biochem. Biophys. Res. Commun. 39 (1970), 90.
    368. M. G. Yates and K. Planque, Eur. J. Biochem. 60 (1975), 467.
    369. T. C. Huang, W. G. Zumft, and L. E. Mortenson, J. Bact. 113 (1973), 884.
    370. P. C. Hallenback, P. J. Kostel, and J. R. Benemann, Eur. J. Biochem. 98 (1979), 275.
    371. S. Norlund, U. Erikson, and H. Baltscheffsky, Biochim. Biophys. Acta 504 (1978), 248.
    372. B. K. Burgess et al., in Reference 242.
    373. S. D. Conradson et aI., J. Am. Chem. Soc. 109 (1987), 7507.
    374. S. A. Vaughn and B. K. Burgess, Biochemistry 28 (1989), 419.
    375. R. W. Miller and R. R. Eady, Biochim. Biophys. Acta 952 (1988), 290.
    376. B. K. Burgess, in Reference 235a, p. 161.
    377. B. J. Hales et al., Biochemistry 25 (1986), 7251.
    378. M. M. Georgiadis et al., Science 257 (1992), 1653.
    379. J. T. Bolin et al., in P. M. Greshoff et al., eds., Nitrogen Fixation: Achievements and Objectives, Chapman and Hall, 1990, p. 117.
    380. J. Kim and D. C. Rees, Science 257 (1992), 1677.
    381. J. Kim and D. C. Rees, Nature 360 (1992), 553.
    382. For allowing us to see and quote their work prior to publication, we are grateful to Prof. M. W. W. Adams, Prof. B. K. Burgess, Dr. R. Cammack, Prof. D. Coucouvanis, Prof. S. P. Cramer, Dr. S. J. George, Prof. J. N. Enemark, Prof. J. Lancaster, Dr. Michelle Millar, Prof. M. Maroney, Prof. W. E. Newton, Prof. D. C. Rees, Prof. Dieter Sellman, Prof. A. E. Shilov, Dr. Barry E. Smith, Dr. R. N. F. Thorneley, and Prof. G. D. Watt. We thank Pat Deuel for her superb efforts under difficult circumstances in the preparation of this manuscript.

    Contributors and Attributions

    • Edward I. Stiefel (Exxon Research and Engineering Company)
    • Graham N. George (Exxon Research and Engineering Company)

    7: Ferrodoxins, Hydrogenases, and Nitrogenases - Metal-Sulfide Proteins is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?