Skip to main content
Chemistry LibreTexts

26.5: Alkenes and Alkynes

  • Page ID
    24383
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    As noed before, alkenes are hydrocarbons with carbon-to-carbon double bonds (R2C=CR2) and alkynes are hydrocarbons with carbon-to-carbon triple bonds (R–C≡C–R). Collectively, they are called unsaturated hydrocarbons because they have fewer hydrogen atoms than does an alkane with the same number of carbon atoms, as is indicated in the following general formulas:

    unsaturated.jpg

    Alkenes

    Some representative alkenes—their names, structures, and physical properties—are given in Table \(\PageIndex{1}\).

    Table \(\PageIndex{1}\): Physical Properties of Some Selected Alkenes
    IUPAC Name Molecular Formula Condensed Structural Formula Melting Point (°C) Boiling Point (°C)
    ethene C2H4 CH2=CH2 –169 –104
    propene C3H6 CH2=CHCH3 –185 –47
    1-butene C4H8 CH2=CHCH2CH3 –185 –6
    1-pentene C5H10 CH2=CH(CH2)2CH3 –138 30
    1-hexene C6H12 CH2=CH(CH2)3CH3 –140 63
    1-heptene C7H14 CH2=CH(CH2)4CH3 –119 94
    1-octene C8H16 CH2=CH(CH2)5CH3 –102 121

    We used only condensed structural formulas in Table \(\PageIndex{1}\). Thus, CH2=CH2 stands for

    CH2=CH2.jpg

    The double bond is shared by the two carbon atoms and does not involve the hydrogen atoms, although the condensed formula does not make this point obvious. Note that the molecular formula for ethene is C2H4, whereas that for ethane is C2H6.

    The first two alkenes in Table \(\PageIndex{1}\), ethene and propene, are most often called by their common names—ethylene and propylene, respectively (Figure \(\PageIndex{1}\)). Ethylene is a major commercial chemical. The US chemical industry produces about 25 billion kilograms of ethylene annually, more than any other synthetic organic chemical. More than half of this ethylene goes into the manufacture of polyethylene, one of the most familiar plastics. Propylene is also an important industrial chemical. It is converted to plastics, isopropyl alcohol, and a variety of other products.

    13.1.jpg
    Figure \(\PageIndex{1}\): Ethene and Propene. The ball-and-spring models of ethene/ethylene (a) and propene/propylene (b) show their respective shapes, especially bond angles.
    Note

    Although there is only one alkene with the formula C2H4 (ethene) and only one with the formula C3H6 (propene), there are several alkenes with the formula C4H8.

    Here are some basic rules for naming alkenes from the International Union of Pure and Applied Chemistry (IUPAC):

    1. The longest chain of carbon atoms containing the double bond is considered the parent chain. It is named using the same stem as the alkane having the same number of carbon atoms but ends in -ene to identify it as an alkene. Thus the compound CH2=CHCH3 is propene.
    2. If there are four or more carbon atoms in a chain, we must indicate the position of the double bond. The carbons atoms are numbered so that the first of the two that are doubly bonded is given the lower of the two possible numbers.The compound CH3CH=CHCH2CH3, for example, has the double bond between the second and third carbon atoms. Its name is 2-pentene (not 3-pentene).
    3. Substituent groups are named as with alkanes, and their position is indicated by a number. Thus,
    naming.jpg

    is 5-methyl-2-hexene. Note that the numbering of the parent chain is always done in such a way as to give the double bond the lowest number, even if that causes a substituent to have a higher number. The double bond always has priority in numbering.

    Example \(\PageIndex{1}\)

    Name each compound.

    1. Ex 1 1.jpg
    2. Ex 1 2.jpg

    Solution

    1. The longest chain containing the double bond has five carbon atoms, so the compound is a pentene (rule 1). To give the first carbon atom of the double bond the lowest number (rule 2), we number from the left, so the compound is a 2-pentene. There is a methyl group on the fourth carbon atom (rule 3), so the compound’s name is 4-methyl-2-pentene.
    2. The longest chain containing the double bond has four carbon atoms, so the parent compound is a butene (rule 1). (The longest chain overall has five carbon atoms, but it does not contain the double bond, so the parent name is not pentene.) To give the first carbon atom of the double bond the lowest number (rule 2), we number from the left, so the compound is a 1-butene. There is an ethyl group on the second carbon atom (rule 3), so the compound’s name is 2-ethyl-1-butene.
    Exercise \(\PageIndex{1}\)

    Name each compound.

    1. CH3CH2CH2CH2CH2CH=CHCH3

    2. SB 2.jpg

    Just as there are cycloalkanes, there are cycloalkenes. These compounds are named like alkenes, but with the prefix cyclo- attached to the beginning of the parent alkene name.

    Example \(\PageIndex{2}\)

    Draw the structure for each compound.

    1. 3-methyl-2-pentene
    2. cyclohexene

    Solution

    1. First write the parent chain of five carbon atoms: C–C–C–C–C. Then add the double bond between the second and third carbon atoms:
      Ex 2 1.jpg

      Now place the methyl group on the third carbon atom and add enough hydrogen atoms to give each carbon atom a total of four bonds.

      Ex 2 1b.jpg
    2. First, consider what each of the three parts of the name means. Cyclo means a ring compound, hex means 6 carbon atoms, and -ene means a double bond.
      Ex 2 2.jpg
    Exercise \(\PageIndex{2}\)

    Draw the structure for each compound.

    1. 2-ethyl-1-hexene
    2. cyclopentene

    Steroisomerism in Alkenes

    There is free rotation about the carbon-to-carbon single bonds (C–C) in alkanes. In contrast, the structure of alkenes requires that the carbon atoms of a double bond and the two atoms bonded to each carbon atom all lie in a single plane, and that each doubly bonded carbon atom lies in the center of a triangle. This part of the molecule’s structure is rigid; rotation about doubly bonded carbon atoms is not possible without rupturing the bond. Look at the two chlorinated hydrocarbons in Figure \(\PageIndex{2}\).

    13.2.1.jpg

    Table \(\PageIndex{2}\): Rotation about Bonds. In 1,2-dichloroethane (a), free rotation about the C–C bond allows the two structures to be interconverted by a twist of one end relative to the other. In 1,2-dichloroethene (b), restricted rotation about the double bond means that the relative positions of substituent groups above or below the double bond are significant.

    In 1,2-dichloroethane (part (a) of Figure \(\PageIndex{2}\)), there is free rotation about the C–C bond. The two models shown represent exactly the same molecule; they are not isomers. You can draw structural formulas that look different, but if you bear in mind the possibility of this free rotation about single bonds, you should recognize that these two structures represent the same molecule:

    free rotation.jpg

    In 1,2-dichloroethene (part (b) of Figure \(\PageIndex{2}\)), however, restricted rotation about the double bond means that the relative positions of substituent groups above or below the double bond become significant. This leads to a special kind of isomerism. The isomer in which the two chlorine (Cl) atoms lie on the same side of the molecule is called the cis isomer (Latin cis, meaning “on this side”) and is named cis-1,2-dichloroethene. The isomer with the two Cl atoms on opposite sides of the molecule is the trans isomer (Latin trans, meaning “across”) and is named trans-1,2-dichloroethene. These two compounds are cis-trans isomers (or geometric isomers), compounds that have different configurations (groups permanently in different places in space) because of the presence of a rigid structure in their molecule.

    Consider the alkene with the condensed structural formula CH3CH=CHCH3. We could name it 2-butene, but there are actually two such compounds; the double bond results in cis-trans isomerism (Figure \(\PageIndex{3}\)).

    13.2.2.jpg

    Table \(\PageIndex{3}\): Ball-and-Spring Models of (a) Cis-2-Butene and (b) Trans-2-Butene. Cis-trans isomers have different physical, chemical, and physiological properties.

    Cis-2-butene has both methyl groups on the same side of the molecule. Trans-2-butene has the methyl groups on opposite sides of the molecule. Their structural formulas are as follows:

    cis, trans.jpg

    Note, however, that the presence of a double bond does not necessarily lead to cis-trans isomerism. We can draw two seemingly different propenes:

    propene.jpg

    However, these two structures are not really different from each other. If you could pick up either molecule from the page and flip it over top to bottom, you would see that the two formulas are identical. Thus there are two requirements for cis-trans isomerism:

    1. Rotation must be restricted in the molecule.
    2. There must be two nonidentical groups on each doubly bonded carbon atom.

    In these propene structures, the second requirement for cis-trans isomerism is not fulfilled. One of the doubly bonded carbon atoms does have two different groups attached, but the rules require that both carbon atoms have two different groups. In general, the following statements hold true in cis-trans isomerism:

    • Alkenes with a C=CH2 unit do not exist as cis-trans isomers.
    • Alkenes with a C=CR2 unit, where the two R groups are the same, do not exist as cis-trans isomers.
    • Alkenes of the type R–CH=CH–R can exist as cis and trans isomers; cis if the two R groups are on the same side of the carbon-to-carbon double bond, and trans if the two R groups are on opposite sides of the carbon-to-carbon double bond.

    Cis-trans isomerism also occurs in cyclic compounds. In ring structures, groups are unable to rotate about any of the ring carbon–carbon bonds. Therefore, groups can be either on the same side of the ring (cis) or on opposite sides of the ring (trans). For our purposes here, we represent all cycloalkanes as planar structures, and we indicate the positions of the groups, either above or below the plane of the ring.

    cis-trans cyclic.jpg
    Example \(\PageIndex{3}\)

    Which compounds can exist as cis-trans (geometric) isomers? Draw them.

    1. CHCl=CHBr
    2. CH2=CBrCH3
    3. (CH3)2C=CHCH2CH3
    4. CH3CH=CHCH2CH3

    Solution

    All four structures have a double bond and thus meet rule 1 for cis-trans isomerism.

    1. This compound meets rule 2; it has two nonidentical groups on each carbon atom (H and Cl on one and H and Br on the other). It exists as both cis and trans isomers:
      1.jpg
    2. This compound has two hydrogen atoms on one of its doubly bonded carbon atoms; it fails rule 2 and does not exist as cis and trans isomers.
    3. This compound has two methyl (CH3) groups on one of its doubly bonded carbon atoms. It fails rule 2 and does not exist as cis and trans isomers.
    4. This compound meets rule 2; it has two nonidentical groups on each carbon atom and exists as both cis and trans isomers:
    4.jpg
    Exercise \(\PageIndex{3}\)

    Which compounds can exist as cis-trans isomers? Draw them.

    1. CH2=CHCH2CH2CH3
    2. CH3CH=CHCH2CH3
    3. CH3CH2CH=CHCH2CH3
    4. SB 1d.jpg
    5. SB 1e.jpg

    E,Z Convention

    E,Z Convention is a method used to specify relative configuration at carbon atoms in alkene groups. According to E,Z convention, if the pair of carbon atoms in an alkene group could exist in two relative configurations, one is designated using the label E and the other the label Z.

    EZconvention1.png

    To determine whether an alkene group is E or Z, use the following two-step procedure.

    Step 1: Assign priority numbers to the two ligands on each carbon atom in the alkene group. (See R,S convention for the procedure.)

    EZconvention2.png EZconvention3.png

    Step 2:

    EZconvention4a.png

    EZconvention4.png EZconvention5.png

    Alkynes

    The simplest alkyne—a hydrocarbon with carbon-to-carbon triple bond—has the molecular formula C2H2 and is known by its common name—acetylene (Figure \(\PageIndex{1}\)). Its structure is H–C≡C–H.

    13.6.1.jpg
    Figure \(\PageIndex{4}\): Ball-and-Spring Model of Acetylene. Acetylene (ethyne) is the simplest member of the alkyne family.
    Note

    Acetylene is used in oxyacetylene torches for cutting and welding metals. The flame from such a torch can be very hot. Most acetylene, however, is converted to chemical intermediates that are used to make vinyl and acrylic plastics, fibers, resins, and a variety of other products.

    Alkynes are similar to alkenes in both physical and chemical properties. For example, alkynes undergo many of the typical addition reactions of alkenes. The International Union of Pure and Applied Chemistry (IUPAC) names for alkynes parallel those of alkenes, except that the family ending is -yne rather than -ene. The IUPAC name for acetylene is ethyne. The names of other alkynes are illustrated in the following exercises.


    26.5: Alkenes and Alkynes is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?